Review for New 5.5, 5.6, 6,1, 6.2
Use the linearization formula to approximate the value of $f(x)=\sin x$ for $x=\frac{\pi}{5}$ when $a=\frac{\pi}{6}$.
Find the real value and find the error. Explain the error.

$$
\begin{gathered}
f(x)=f(a)+f^{\prime}(a)(x-a)=\sin x \quad f^{\prime}(x)=\cos x \\
L\left(\frac{\pi}{5}\right)=\sin \frac{\pi}{6}+f^{\prime}\left(\frac{\pi}{6}\right)\left(\frac{\pi}{5}-\frac{\pi}{6}\right) \\
L\left(\frac{\pi}{5}\right)=\frac{1}{2}+\frac{\sqrt{3}}{2}\left(\frac{\pi}{5}-\frac{\pi}{6}\right)=.591 \\
f\left(\frac{\pi}{5}\right)=.588
\end{gathered}
$$

The error is .003 .

Use the linearization formula to approximate the value of $\sqrt[3]{126}$.
Find the real value and find the error. Explain the error.

$$
y=\sqrt[3]{x} \quad y^{\prime}=\frac{1}{3} x^{-\frac{2}{3}}=\frac{1}{3 x^{\frac{2}{3}}} \quad x=126 \quad a=125
$$

$L(x)=f(a)+f^{\prime}(a)(x-a)$

$$
\begin{gathered}
L(126)=5+\frac{1}{75}(1)=5 \frac{1}{75}=5.013 \\
f(126)=5.013
\end{gathered}
$$

The error is 0 using three place notation.

Use Newton's Method to find the zero of $y=x^{3}-2 x+3$ starting at $x=1$ and using the method three times. What is the error?

$$
\begin{aligned}
f(x)=x^{3}-2 x+3 f(1) & =2 \quad f^{\prime}(x)=3 x^{2}-2 \quad f^{\prime}(1)=1 \\
y-2 & =1(x-1) \\
-2 & =x-1 \\
-1 & =x
\end{aligned}
$$

$$
f(x)=x^{3}-2 x+3 \quad f(-1)=4 \quad f^{\prime}(x)=3 x^{2}-2 \quad f^{\prime}(-1)=1
$$

$$
y-4=1(x+1)
$$

$$
-4=x+1
$$

$$
x=-5
$$

$$
f(x)=x^{3}-2 x+3 f(-5)=-112 \quad f^{\prime}(x)=3 x^{2}-2 \quad f^{\prime}(-5)=73
$$

$$
y+112=73(x+5)
$$

$$
112=73(x+5)
$$

$$
\frac{112}{73}=x+5
$$

$$
x=-3.507
$$

Actual zero is $x=-1.893$. The error is 1.634 .

What is the differential of $y=\ln (x+3)$ if $x=4$ and $d x=.2$?

$$
y^{\prime}=\frac{1}{x+3} \quad \frac{d y}{d x}=\frac{1}{x+3} \quad d y=\frac{1}{x+3} d x=\frac{1}{7}(.2)=\frac{2}{70}=\frac{1}{35}
$$

$$
\text { y } \quad x=24, z=26, x^{\prime}=2, y^{\prime}=3
$$

What is z^{\prime} ?

$$
\begin{aligned}
& x^{2}+y^{2}=z^{2} \\
& 24^{2}+y^{2}=26^{2} \\
& y=10
\end{aligned}
$$

$$
x^{2}+y^{2}=z^{2}
$$

$$
2 x x^{\prime}+2 y y^{\prime}=2 z z^{\prime}
$$

$$
2(24) 2+2(10)(3)=2(26) z^{\prime}
$$

$$
96+60=52 z^{\prime} \quad z^{\prime}=\frac{156}{52}=3
$$

A 30 foot ladder is 24 feet from the wall and falling at a rate of $3 \mathrm{ft} / \mathrm{sec}$. How fast is it moving away from the wall? What is the rate of the angle between the ladder and the ground?

x

$$
x^{2}+y^{2}=z^{2}
$$

x^{\prime}
$x^{2}+y^{2}=z^{2}$

$$
\begin{gathered}
24^{2}+y^{2}=30^{2} \\
y=18 \\
2 x x^{\prime}+2 y y^{\prime}=2 z z^{\prime} \\
2(24)\left(x^{\prime}\right)+2(18)(-3)=0 \\
48 x^{\prime}-108=0 \\
x^{\prime}=\frac{108}{48}=2.25 \\
\sin \theta=\frac{y}{z} \quad \sin \theta=\frac{y}{30} \quad 30 \sin \theta=y \quad 30 \cos \theta \theta^{\prime}=y^{\prime} \\
30\left(\frac{24}{30}\right) \theta^{\prime}=-3 \quad 24 \vartheta^{\prime}=-3 \quad \vartheta^{\prime}=-\frac{1}{8} \quad \mathrm{rad} / \mathrm{sec}
\end{gathered}
$$

A conical reservoir with vertex down is leaking water at a rate of $24 \pi \frac{m^{3}}{\text { hour }}$. If the initial height is 12 m and the radius is 6 m , find how fast the radius and height are changing when the height is 5.

$$
\begin{aligned}
& h=2 r \quad \text { If the height is } 5, \text { the radius is } 5 / 2 \\
& V=\pi r^{2} h=\pi r^{2}(2 r)=2 \pi r^{3} \\
& V^{\prime}=6 \pi r^{2} r^{\prime} \quad-24 \pi=6 \pi\left(\frac{5}{2}\right)^{2} r^{\prime} \quad-24 \pi=\frac{6 \pi r \prime(25)}{4} \\
& -96 \pi=150 \pi r^{\prime} \quad r^{\prime}=-\frac{96}{150}=-\frac{16}{25}
\end{aligned}
$$

A dinghy (small boat) is being pulled into shore with a rope from a 12 foot dock at a rate of 3 $\mathrm{ft} / \mathrm{sec}$. When the boat is 16 feet from the dock, how fast is the boat approaching the dock?

$$
\begin{aligned}
& 2 x x^{\prime}+2 y y^{\prime}=2 z z^{\prime} \\
& 2(16) x^{\prime}+2(12)(0)=2(20)(-3) \\
& 32 x^{\prime}=-120 \quad x^{\prime}=-\frac{120}{32}=-\frac{15}{4}
\end{aligned}
$$

The boat is approaching the dock at $\frac{15}{4} \mathrm{ft} / \mathrm{sec}$.
Approximate the area between the curve and the x -axis using the LRAM, RRAM, MRAM with $f(x)=x^{3}+5 x^{2}+7 x+10$ with four rectangles or trapezoids or the interval [1,5]. Use your calculator.

$x=$	1	2	3	4	5	1.5	2.5	3.5	4.5
$y=$	23	52	103	182	295	35.125	74.375	138.625	233.875

LRAM $23(1)+52(1)+103(1)+182(1)=360$
RRAM $295(1)+182(1)+103(1)+52(1)=632$
MRAM 482
Express the limit as a definite integral. $\quad \lim _{n \rightarrow \infty} \sum_{k=1}^{n} 2 c_{k}{ }^{3} \Delta x,[-2,7]$

$$
\int_{-2}^{7}\left(2 x^{3}\right) d x
$$

Use the area and the integrand to solve the integral.
$\int_{-4}^{4}|2 x-1| d x$
Graph $y=|2 x-1| \quad$ You form two triangles.

$\frac{9}{2}$

$\frac{7}{2}$
$\frac{1}{2}\left(\frac{9}{2}\right)(9)+\frac{1}{2}\left(\frac{7}{2}\right)(7)=\frac{81}{4}+\frac{49}{4}=\frac{130}{4}=\frac{65}{2}$

$$
\int_{-3}^{3}\left(7+\sqrt{9-x^{2}}\right) d x
$$

The area is a rectangle $(7)(6)=42$.
The area of the semi-circle $\frac{\pi r^{2}}{2}=\pi \frac{9}{2}=\frac{9 \pi}{2}$
$42+\frac{9 \pi}{2}$
$\int_{a}^{b} 3 x d x$ with $0<a<x<b$.
You create a trapezoid.

a
b-a
b

Find the total area under the curve $y=-4 x$ from $[-3,8]$.
Total area is making all areas positive and adding them together.
You do not consider area under the x -axis as negative.

$$
\begin{aligned}
& A=\frac{1}{2} b h+\frac{1}{2} b h \\
& A=\frac{1}{2}(3)(12)+\frac{1}{2}(8)(32)=146
\end{aligned}
$$

