Review for 9.1-9.4 NO 9.3
Give an example of an arithmetic sequence.

Do arithmetic sequences converge or diverge?

Give an example of a geometric sequence.

Do geometric series converge or diverge?

Do the following sequences converge or diverge? If it converges, give the value it converges to.

$$
\begin{aligned}
& a_{n}=\frac{2 n}{n+3} \\
& a_{n}=(-1)^{n} \frac{n+1}{n^{2}+2} \\
& a_{n}=(1.1)^{n} \\
& a_{n}=\cos \left(\frac{n \pi}{2}\right)
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{\tan x}=
$$

$$
\lim _{h \rightarrow 0} \frac{1}{h} \ln \left(\frac{2+h}{h}\right)=
$$

$$
\lim _{x \rightarrow 0} \frac{1-\cos ^{2}(2 x)}{x^{2}}=
$$

$$
\lim _{n \rightarrow \infty} \frac{4 n^{2}}{n^{2}+10,000 n}=
$$

$$
\lim _{x \rightarrow 0}(x \csc x)=
$$

$\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin \left(x-\frac{\pi}{4}\right)}{x-\frac{\pi}{4}}=$

$$
\lim _{x \rightarrow \infty}\left(1+5 e^{x}\right)^{\frac{1}{x}}=
$$

If $f^{\prime}(x)=\cos x$ and $g^{\prime}(x)=1$ for all x, and if $f(0)=g(0)=0$, then $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=$ If k is a positive integer, then $\lim _{x \rightarrow+\infty} \frac{e^{k}}{e^{x}}$ is
A) 0
B) 1
C) e
D) $k!$
E) nonexistent
$\lim _{n \rightarrow \infty} \frac{3 n^{3}-5 n}{n^{3}-2 n^{2}+1}=$
$\lim _{x \rightarrow 0} \frac{1-\cos x}{2 \sin ^{2} x}=$

Let f and g be functions that are differentiable for all real numbers, with

$$
g(x) \neq 0 \text { for } x \neq 0 . \text { If } \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)=0 \text { and } \lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$ exists, then $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}$ is

$\lim _{h \rightarrow 0} \frac{e^{h}-1}{2 h}=$
$\lim _{x \rightarrow 1} \frac{\int_{1_{1}^{x}} e^{t^{2}} d t}{x^{2}-1}$
$\lim _{x \rightarrow 0} \frac{e^{x}-\cos x-2 x}{x^{2}-2 x}=$

Evaluate the integral with a number or by stating it diverges.
$\int_{-1}^{1} \frac{3}{x^{2}} d x=$

$$
\int_{2}^{+\infty} \frac{d x}{x^{2}}=
$$

$$
\int_{4}^{\infty} \frac{-2 x}{\sqrt[3]{9-x^{2}}} d x=
$$

$\int_{1}^{\infty} \frac{x}{\left(1+x^{2}\right)^{2}} d x=$

$$
\int_{0}^{\infty} x^{2} e^{-x^{3}} d x=
$$

Let R be the region between the graph of $y=e^{-2 x}$ and the x -axis for $x \geq 3$. The area of R is

