9.4 Improper Integrals
$\int_{1}^{\infty} \frac{1}{x^{3}} d x$
You are taking the integral of an infinite region.

1) Express the improper integral as the limit of an integral.

$$
\lim _{a \rightarrow \infty} \int_{1}^{a} \frac{1}{x^{3}} d x
$$

2) Evaluate the integral by whatever method works.

$$
\lim _{a \rightarrow \infty} \int_{1}^{a} \frac{1}{x^{3}} d x=\lim _{a \rightarrow \infty} \int_{1}^{a} x^{-3} d x=\lim _{a \rightarrow \infty} \frac{x^{-2}}{-2}\left|\begin{array}{l}
a \\
1
\end{array}=\lim _{a \rightarrow \infty}-\frac{1}{2 x^{2}}\right| \begin{gathered}
a \\
1
\end{gathered}
$$

3) Evaluate the limit.

$$
\lim _{a \rightarrow \infty}-\frac{1}{2 x^{2}} \left\lvert\, \frac{a}{1}=\lim _{a \rightarrow \infty}-\frac{1}{2 a^{2}}+\frac{1}{2}=0+\frac{1}{2}=\frac{1}{2}\right.
$$

The area under an infinitely long curve is actually finite.
Since this area is finite, the integral converges to $1 / 2$.

Another example
$\int_{1}^{\infty} \frac{1}{x} d x$

1) Express the improper integral as the limit of an integral.

$$
\lim _{a \rightarrow \infty} \int_{1}^{a} \frac{1}{x} d x=\left.\lim _{a \rightarrow \infty} \ln x\right|_{1} ^{a}=
$$

2) Evaluate the integral by whatever method works.

$$
\left.\lim _{a \rightarrow \infty} \ln x\right|_{1} ^{\infty}
$$

3) Evaluate the limit.

$$
\lim _{a \rightarrow \infty}(\ln a-\ln 1)=\ln \infty
$$

The improper integral cannot be evaluated, because the area it represents is infinite. The integral diverges as it does not approach a value.

Can you create a pattern to know if the integral will converge or diverge?

Another Example

$$
\int_{0}^{1} \frac{1}{\sqrt{x}} d x
$$

1) Express the improper integral as the limit of an integral.

$$
\lim _{a \rightarrow 0^{+}} \int_{a}^{1} \frac{1}{\sqrt{x}} d x=\lim _{a \rightarrow 0^{+}} \int_{a}^{1} x^{-\frac{1}{2}} d x=
$$

2) Evaluate the integral by whatever method works.

$$
\left.\lim _{a \rightarrow 0^{+}} 2 x^{\frac{1}{2}}\right|_{a} ^{1}
$$

3) Evaluate the limit.

$$
\lim _{a \rightarrow 0^{+}} 2(\sqrt{1}-\sqrt{a})=2(1-0)=2
$$

1985
36) $\int_{-1}^{1} \frac{3}{x^{2}} d x=$

$$
\begin{aligned}
& \int_{-1}^{0} \frac{3}{x^{2}} d x+\int_{0}^{1} \frac{3}{x^{2}} d x=\lim _{b \rightarrow 0}\left(\int_{-1}^{b} \frac{3}{x^{2}} d x+\int_{b}^{1} \frac{3}{x^{2}} d x\right)= \\
& \lim _{b \rightarrow 0}-\left.\frac{3}{x}\right|_{-1} ^{b}+\lim _{b \rightarrow 0}-\left.\frac{3}{x}\right|_{b} ^{1}=\lim _{b \rightarrow 0}-\frac{3}{b}-\left(-\frac{3}{-1}\right)+\left(-\frac{3}{1}-\left(-\frac{3}{b}\right)\right) \\
& \lim _{b \rightarrow 0}-\frac{3}{b}-3-3+\frac{3}{b}=\text { undefined so the integral diverges. }
\end{aligned}
$$

1988 7) $\int_{2}^{+\infty} \frac{d x}{x^{2}}=$

$$
\lim _{b \rightarrow+\infty} \int_{2}^{b} \frac{d x}{x^{2}}=\lim _{b \rightarrow+\infty}-\left.\frac{1}{x}\right|_{2} ^{b}=\lim _{b \rightarrow+\infty}-\frac{1}{b}+\frac{1}{2}=0+\frac{1}{2}=\frac{1}{2}
$$

1993 11) $\int_{4}^{\infty} \frac{-2 x}{\sqrt[3]{9-x^{2}}} d x=$

$$
\lim _{b \rightarrow \infty} \int_{4}^{b} \frac{-2 x}{\sqrt[3]{9-x^{2}}} d x=
$$

Use a u substitution. $u=9-x^{2}, d u=-2 x d x$

$$
\begin{gathered}
\frac{d u}{d x}=-2 x \quad d u=-2 x d x \\
\int \frac{d u}{\sqrt[3]{u}}=\int u^{-\frac{1}{3}} d u=\frac{3}{2} u^{\frac{2}{3}}=\left.\lim _{b \rightarrow \infty} \frac{3}{2}\left(9-x^{2}\right)^{\frac{2}{3}}\right|_{4} ^{b} 4 \\
\lim _{b \rightarrow \infty} \frac{3}{2}\left(9-b^{2}\right)^{\frac{2}{3}}-\lim _{b \rightarrow \infty} \frac{3}{2}(9-16)^{\frac{2}{3}}=\text { nonexistant }
\end{gathered}
$$

1997 11) $\int_{1}^{\infty} \frac{x}{\left(1+x^{2}\right)^{2}} d x=$

$$
\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{x}{\left(1+x^{2}\right)^{2}} d x
$$

Use a u substitution. $u=1+x^{2}$

$$
\begin{gathered}
\frac{d u}{d x}=2 x \quad \frac{d u}{2}=x d x \\
\frac{1}{2} \int \frac{d u}{u^{2}}=-\frac{1}{2 u}=\lim _{b \rightarrow \infty}-\left.\frac{1}{2\left(1+x^{2}\right)}\right|_{1} ^{b}=\lim _{b \rightarrow \infty}-\frac{1}{\left(1+b^{2}\right)^{2}}+\frac{1}{\left(1+1^{2}\right)^{2}}=0+\frac{1}{4}=\frac{1}{4}
\end{gathered}
$$

1998

$$
\text { 25) } \begin{aligned}
& \int_{0}^{\infty} x^{2} e^{-x^{3}} d x=u=-x^{3} \quad d u=-3 x^{2} d x \quad \frac{d u}{-3}=x^{2} d x \\
& \quad-\frac{1}{3} \int e^{u} d u=-\frac{1}{3} e^{u}=\lim _{b \rightarrow \infty}-\left.\frac{1}{3} e^{-x^{3}}\right|_{0} ^{b}=\lim _{b \rightarrow \infty}-\left.\frac{1}{3 e^{x^{3}}}\right|_{0} ^{b}= \\
& \lim _{b \rightarrow \infty}-\frac{1}{3 e^{b^{3}}}+\frac{1}{3 e^{0}}=\frac{1}{3}
\end{aligned}
$$

2008 11) Let R be the region between the graph of $y=e^{-2 x}$ and the x -axis for $x \geq 3$. The area of R is

$$
\begin{aligned}
& \int_{3}^{\infty} e^{-2 x} d x=\lim _{b \rightarrow \infty} \int_{3}^{b} e^{-2 x} d x=\lim _{b \rightarrow \infty}-\left.\frac{1}{2} e^{-2 x}\right|_{3} ^{b}= \\
& \lim _{b \rightarrow \infty}-\frac{1}{2 e^{2 b}}+\frac{1}{2 e^{6}}=\frac{1}{2 e^{6}}
\end{aligned}
$$

Let f be the function defined by $f(x)=-\ln x$ for $0<x \leq 1$ and let R be the region between the graph of f and the x -axis.
a) Determine whether the region R has finite area. Justify your answer.

$$
\begin{aligned}
& \int_{0}^{1}-\ln x d x=\lim _{b \rightarrow 0} \int_{b}^{1}-\ln x d x \text { Voodoo } \\
& u=\ln x \quad d v=1 \\
& d u=\frac{1}{x} d x \quad v=x \\
& \lim _{b \rightarrow 0}-\left(x \ln x-\int_{b}^{1} \frac{1}{x}(x) d x\right)=\lim _{b \rightarrow 0}-\left.(x \ln x-x)\right|_{b} ^{1}= \\
& \lim _{b \rightarrow 0}-(1 \ln 1-1)+(b \ln b-b)= \\
& \lim _{b \rightarrow 0} 1+b \ln b-b=1+\lim _{b \rightarrow 0} b \ln b-b=1+\lim _{b \rightarrow 0} \frac{\ln b}{\frac{1}{b}}-\frac{1}{\frac{1}{b}}= \\
& 1+\lim _{b \rightarrow 0} \frac{\ln b-1}{\frac{1}{b}} \quad \text { Use L'hopital's Rule } \\
& 1+\lim _{b \rightarrow 0} \frac{\frac{1}{b}}{-\frac{1}{b^{2}}}=1+\lim _{b \rightarrow 0}-b=1-0=1
\end{aligned}
$$

Determine whether the solid generated by revolving region R about the y-axis has finite volume.

When you rotate it about the y-axis, you change it to $x=$ something.
Use a pancake formula. $A=\pi r^{2}$

$$
\begin{aligned}
& y=-\ln x-y=\ln x \quad x=e^{-y} \\
& \pi \int_{0}^{\infty}\left(e^{-y}\right)^{2} d y=\pi \lim _{b \rightarrow \infty}-\left.\frac{1}{2} e^{-2 y}\right|_{0} ^{b}=\frac{1}{2} \pi \lim _{b \rightarrow \infty}\left(-\frac{1}{e^{b}}+\frac{1}{e^{0}}\right)=\frac{\pi}{2}
\end{aligned}
$$

Let f be the function satisfying $f^{\prime}(x)=-3 x f(x)$, for all real numbers x, with $f(1)=4$ and $\lim _{x \rightarrow \infty} f(x)=0$.
a) Evaluate $\int_{1}^{\infty}-3 x f(x) d x$. Show the work that leads to your answer.

$$
\lim _{b \rightarrow \infty} \int_{1}^{b}-3 x f(x) d x=\left.\lim _{b \rightarrow \infty} f(x)\right|_{1} ^{b}=0-f(1)=-4
$$

b) Use Euler's method, starting at $x=1$ with a step size of 0.5 , to approximate $f(2)$.

Point	$f^{\prime}(x)=$ $-3 x f(x)$	$\Delta x=.5$	$d y$	New Point
$(1,4)$	$-3(1)(4)$ $=-12$.5	-6	$(1.5,-2)$
$(1.5,-2)$	$-3(1.5)(-2)$ $=9$.5	4.5	$(2,2.5)$

c) Write an expression for $y=f(x)$ by solving the differential equation $\frac{d y}{d x}=-3 x y$ with the initial condition $f(1)=4$.

$$
\begin{gathered}
\int \frac{d y}{y}=\int-3 x d x \\
\ln |y|=-\frac{3 x^{2}}{2}+C \\
y=e^{-\frac{3 x^{2}}{2}+C}=e^{-\frac{3 x^{2}}{2}} e^{c} \quad \text { Let } e^{C}=K \\
y=K e^{-\frac{3 x^{2}}{2}} \\
4=K e^{-\frac{3}{2}} \frac{4}{e^{-\frac{3}{2}}}=K \quad K=4 e^{\frac{3}{2}} \\
y=4 e^{\frac{3}{2}} e^{-\frac{3 x^{2}}{2}}
\end{gathered}
$$

Let g be the function given by $g(x)=\frac{1}{\sqrt{x}}$.
a) Find the average value of g on the closed interval $[1,4]$.

The average value formula is $\frac{1}{b-a} \int_{a}^{b} f(x) d x$.

$$
\frac{1}{4-1} \int_{1}^{4} \frac{1}{\sqrt{x}} d x=\frac{1}{3} \int_{1}^{4} x^{-\frac{1}{2}} d x=\left.\frac{1}{3}(2) x^{\frac{1}{2}}\right|_{1} ^{4}=\frac{2}{3}(2)-\frac{2}{3}(1)=\frac{2}{3}
$$

b) Let S be the solid generated when the region bounded by the graph of $y=g(x)$, the vertical lines $x=1$ and $x=4$, and the x -axis is revolved about the x -axis. Find the volume of S.

Use a pancake formula. $A=\pi r^{2}$

$$
\pi \int_{1}^{4}\left(\frac{1}{\sqrt{x}}\right)^{2} d x=\left.\pi \ln x\right|_{1} ^{4}=\pi \ln 4-\pi \ln 1=\pi \ln 4
$$

c) For the solid S, given in part (b), find the average value of the areas of the cross sections perpendicular to the x -axis.

$$
\begin{aligned}
& A=\pi r^{2}=\pi\left(\frac{1}{\sqrt{x}}\right)^{2}=\frac{\pi}{x} \\
& \frac{1}{3} \int_{1}^{4} \frac{\pi}{x} d x=\left.\frac{\pi}{3} \ln x\right|_{1} ^{4}=\frac{\pi}{3} \ln 4-\frac{\pi}{3} \ln 1=\frac{\pi}{3} \ln 4
\end{aligned}
$$

d) The average value of a function f on the unbounded interval $[a, \infty]$ is defined to be $\lim _{b \rightarrow \infty}\left[\frac{\int_{a}^{b} f(x) d x}{b-a}\right]$. Show that the improper integral $\int_{4}^{\infty} g(x) d x$ is divergent, but the average value of g on the interval $[4, \infty]$ is finite.

$$
\begin{aligned}
& \int_{4}^{\infty} \frac{1}{\sqrt{x}} d x=\lim _{b \rightarrow \infty} \int_{4}^{b}(x)^{-\frac{1}{2}} d x=\left.\lim _{b \rightarrow \infty} 2(\sqrt{x})\right|_{4} ^{b}=\lim _{b \rightarrow \infty} 2 \sqrt{b}-4 \text { which diverges } \\
& \lim _{b \rightarrow \infty}\left[\frac{\int_{a}^{b} f(x) d x}{b-a}\right]=\lim _{b \rightarrow \infty} \frac{1}{b-4} \int_{4}^{b}(x)^{-\frac{1}{2}} d x=\left.\lim _{b \rightarrow \infty} \frac{1}{b-4} 2(\sqrt{x})\right|_{4} ^{b}= \\
& \lim _{b \rightarrow \infty} \frac{2 \sqrt{b}-2 \sqrt{4}}{b-4}=\lim _{b \rightarrow \infty} \frac{2 \sqrt{b}-4}{b-4}=0
\end{aligned}
$$

2010 \# 5
Let f and g be the functions defined by $f(x)=\frac{1}{x}$ and $g(x)=\frac{4 x}{1+4 x^{2}}$, for all $x>0$.
a) Find the absolute maximum value of g on the open interval $(0, \infty)$ if the maximum exists. Find the absolute minimum value of g on the open interval $(0, \infty)$ if the minimum exists. Justify your answers.

To find a maximum, find $g^{\prime}(x)$, set it equal to 0 , create a chart $\ldots .$.

$$
\begin{aligned}
g(x) & =\frac{4 x}{1+4 x^{2}} \quad g^{\prime}(x)=\frac{4\left(1+4 x^{2}\right)-4 x(8 x)}{\left(1+4 x^{2}\right)^{2}}=\frac{4+16 x^{2}-32 x^{2}}{\left(1+4 x^{2}\right)^{2}} \\
g^{\prime}(x) & =\frac{4-16 x^{2}}{\left(1+4 x^{2}\right)^{2}} \\
g^{\prime}(x) & =0 \text { when } 4-16 x^{2}=0 \quad 4=16 x^{2} \quad \frac{1}{4}=x^{2} \quad x= \pm \frac{1}{2}
\end{aligned}
$$

The problem says on the open interval $(0, \infty)$ so we use $x=\frac{1}{2}$.

x	0	$\frac{1}{2}$	1
$f^{\prime}(x)$	+	0	-

Since $g^{\prime}(x)>0$ for $0<x<\frac{1}{2}$ and $g^{\prime}(x)>0$ for $x>\frac{1}{2}$, there is a maximum at $x=\frac{1}{2}$.
The value is $g\left(\frac{1}{2}\right)=\frac{4\left(\frac{1}{2}\right)}{1+4\left(\frac{1}{2}\right)^{2}}=\frac{2}{1+1}=1$.
g has a maximum value of 1 at $x=\frac{1}{2}$ and g has no minimum value on the open interval $(0, \infty)$.
b) Find the area of the unbounded region in the first quadrant to the right of the vertical line $x=1$, below the graph of f, and above the graph of g.

$$
\begin{gathered}
\int_{1}^{\infty}(f(x)-g(x)) d x=\int_{1}^{\infty}\left(\frac{1}{x}-\frac{4 x}{1+4 x^{2}}\right) d x=\left.\lim _{b \rightarrow \infty}\left(\ln x-\frac{1}{2} \ln \left(1+4 x^{2}\right)\right)\right|_{1} ^{b} \\
\lim _{b \rightarrow \infty}\left(\ln b-\frac{1}{2} \ln \left(1+4 b^{2}\right)-\ln 1+\frac{1}{2} \ln 5\right)= \\
\lim _{b \rightarrow \infty} \ln \left(\frac{b \sqrt{5}}{\sqrt{1+4 b^{2}}}\right)=\lim _{b \rightarrow \infty} \ln \left(\frac{\sqrt{5 b^{2}}}{\sqrt{1+4 b^{2}}}\right)=\frac{1}{2} \lim _{b \rightarrow \infty} \ln \left(\frac{5 b^{2}}{1+4 b^{2}}\right)=\frac{1}{2} \ln \frac{5}{4}
\end{gathered}
$$

