
9.4 Improper Integrals  
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You are taking the integral of an infinite region. 

1) Express the improper integral as the limit of an integral. 
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2) Evaluate the integral by whatever method works. 
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3) Evaluate the limit. 
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The area under an infinitely long curve is actually finite. 

Since this area is finite, the integral converges to ½ . 

 

Another example 
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1) Express the improper integral as the limit of an integral. 
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2) Evaluate the integral by whatever method works. 
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3) Evaluate the limit. 
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The improper integral cannot be evaluated, because the area it represents is infinite. 

The integral diverges as it does not approach a value. 

 

Can you create a pattern to know if the integral will converge or diverge? 



Another Example 
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1) Express the improper integral as the limit of an integral. 
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2) Evaluate the integral by whatever method works. 
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3) Evaluate the limit. 
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           so the integral diverges. 
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Use a u substitution.                  
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  Use a u substitution.        
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2008 11) Let   be the region between the graph of        and the x-axis for       The 

area of   is  
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1985 # 5 

Let   be the function defined by  ( )       for       and let   be the region between the 

graph of   and the x-axis. 

a) Determine whether the region   has finite area.  Justify your answer. 
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 Use L’hopital’s Rule  

         

 

 

   
 

  

                  

 

Determine whether the solid generated by revolving region   about the         

has finite volume. 

 When you rotate it about the y-axis, you change it to              

   Use a pancake formula.         
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Let   be the function satisfying   ( )      ( ), for all real numbers  , with  ( )    and 

       ( )   . 

a) Evaluate ∫     ( )   
 

 
  Show the work that leads to your answer. 
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b) Use Euler’s method, starting at     with a step size of    , to approximate  ( ). 

Point   ( )   

    ( ) 

         New Point 
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.5 4.5 (2, 2.5) 

 

 

c) Write an expression for    ( ) by solving the differential equation 
  

  
      with 

the initial condition  ( )     
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Let   be the function given by  ( )  
 

√ 
  

a) Find the average value of   on the closed interval [1, 4]. 

The average value formula is 
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b) Let   be the solid generated when the region bounded by the graph of    ( ), the 

vertical lines     and    , and the x-axis is revolved about the x-axis.  Find the 

volume of    

Use a pancake formula.           

   ∫ (
 

√ 
)        | 

 
               

 

 
 

c) For the solid  , given in part (b), find the average value of the areas of the cross sections 

perpendicular to the x-axis. 
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d) The average value of a function   on the unbounded interval       is defined to be 
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].  Show that the improper integral ∫  ( )  

 

 
 is divergent, but the 

average value of   on the interval       is finite.   
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Let   and   be the functions defined by  ( )  
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  for all      

a) Find the absolute maximum value of   on the open interval (   ) if the maximum 

exists.  Find the absolute minimum value of   on the open interval (   ) if the minimum 

exists.  Justify your answers. 

To find a maximum, find   ( ), set it equal to 0,  create a chart ….. 
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  The problem says on the open interval (   ) so we use   
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Since   ( )    for     
 

 
 and   ( )    for   

 

 
, there is a maximum at   
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  has a maximum value of   at   
 

 
 and   has no minimum value on the open interval (   ). 

 

 

 

 



b) Find the area of the unbounded region in the first quadrant to the right of the vertical line 

   , below the graph of  , and above the graph of  . 
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