8.2 L'Hopital's Rule

A whack function is defined as one of several weird functions:

$$
\frac{0}{0}, \frac{\infty}{\infty}, \infty \cdot 0, \infty-\infty, 1^{\infty}, 0^{0} \& \infty^{0}
$$

If you have a function where you have limit that creates a whack function, you can use a special rule.

If $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\frac{0}{0}$ then this is true: $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
And if you get lucky and $\lim _{x \rightarrow 0} \frac{f \prime(x)}{g^{\prime}(x)}=\frac{0}{0}$, you can do this:

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}
$$

You are not doing a quotient rule, you are taking the derivative of the top and the derivative of the bottom.
Examples:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{\cos x}{1}=\cos 0=1 \\
& \lim _{x \rightarrow 0^{-}} \frac{\sin x}{x^{2}}=\lim _{x \rightarrow 0^{-}} \frac{\cos x}{2 x}=\frac{-1}{0}=-\infty
\end{aligned}
$$

This also works if $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\frac{\infty}{\infty}$.
Example:

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{2 \sqrt{x}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{\sqrt{x}}}=\frac{1}{\sqrt{x}}=0
$$

Sometimes we need to change $\infty \cdot 0$ to $\frac{0}{0}$ by doing some algebra.
Examples:
$\lim _{x \rightarrow \infty} x \sin \frac{1}{x}$

$$
\text { Let } h=\frac{1}{x} \text {, so } x=\frac{1}{h} \quad \lim _{h \rightarrow 0^{+}} \frac{1}{h} \sinh =\lim _{h \rightarrow 0^{+}} \frac{\sinh }{h}=\lim _{h \rightarrow 0^{+}} \frac{\cosh }{1}=1
$$

Quick reminder of finding the derivatives with functions with functions as powers.

$$
\begin{aligned}
& y=x^{x} \quad \ln y=\ln x^{x} \quad \ln y=x \ln x \\
& \frac{y^{\prime}}{y}=\ln x+x \cdot \frac{1}{x} \quad \frac{y^{\prime}}{y}=\ln x+1 \quad y^{\prime}=y(\ln x+1)=x^{x}(\ln x+1)
\end{aligned}
$$

You need to take the natural log of both sides.
Example:

$$
\lim _{x \rightarrow 0^{+}}\left(x^{x}\right)
$$

Let $\lim _{x \rightarrow 0^{+}} y=\lim _{x \rightarrow 0^{+}}\left(x^{x}\right)$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \ln y & =\left(\lim _{x \rightarrow 0^{+}} \ln x^{x}\right) \\
& =\lim _{x \rightarrow 0^{+}} x \ln x \\
& =\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}}=-x=0
\end{aligned}
$$

Remember that we found the $\lim _{x \rightarrow 0^{+}} \ln y=0$.
If $\ln y=0, y=1$.
$\lim _{x \rightarrow 0^{+}}\left(x^{x}\right)=1$

This looks ugly, but stay calm.
$\lim _{x \rightarrow 1} \frac{\int_{1}^{x d t} t}{x^{3}-1}=\frac{0}{0}$ so we can do L'Hopital's.
$\lim _{x \rightarrow 1} \frac{\int_{1}^{x d t} t}{x^{3}-1}=\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{3 x^{2}}=\frac{1}{3}$

1969 What is $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{\tan x} ? \quad \lim _{x \rightarrow 0} \frac{2 e^{2 x}}{\sec ^{2} x}=\frac{2}{1}=2$
$1973 \lim _{h \rightarrow 0} \frac{1}{h} \ln \left(\frac{2+h}{h}\right)$ is
$\lim _{x \rightarrow 0} \frac{\ln \left(\frac{2+h}{h}\right)}{h}=\lim _{x \rightarrow 0} \frac{\frac{\frac{h-(2-h)}{h^{2}}}{\frac{2+h}{h}}}{h}=\lim _{x \rightarrow 0} \frac{\frac{\frac{-2}{h^{2}}}{\frac{2+h}{h}}}{h}$

$$
\lim _{x \rightarrow 0} \frac{\frac{-2}{h^{2}}}{\frac{h(2+h)}{h}}=\lim _{x \rightarrow 0} \frac{-2}{h^{2}} \cdot \frac{h(2+h)}{h}=\lim _{x \rightarrow 0} \frac{-4-2 h}{h^{2}}=\infty
$$

$1985 \lim _{x \rightarrow 0} \frac{1-\cos ^{2}(2 x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{-2 \cos (2 x)(-\sin (2 x)) 2}{2 x}=\lim _{x \rightarrow 0} \frac{4 \cos 2 x \sin 2 x}{2 x}$

$$
\lim _{x \rightarrow 0} \frac{4((\cos 2 x)(2 \cos 2 x)+(-2 \sin 2 x)(\sin 2 x))}{2}=\frac{4-0}{2}=2
$$

$1985 \lim _{n \rightarrow \infty} \frac{4 n^{2}}{n^{2}+10,000 n}=4$
$1985 \lim _{x \rightarrow 0}(x \csc x)=\lim _{x \rightarrow 0} \frac{x}{\sin x}=\lim _{x \rightarrow 0} \frac{1}{\cos x}=\frac{1}{1}=1$
$1985 \lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin \left(x-\frac{\pi}{4}\right)}{x-\frac{\pi}{4}}=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos \left(x-\frac{\pi}{4}\right)}{1}=\frac{1}{1}=1$

$$
\begin{aligned}
& 1985 \lim _{x \rightarrow \infty}\left(1+5 e^{x}\right)^{\frac{1}{x}}= \\
& y=\left(1+5 e^{x}\right)^{\frac{1}{x}} \\
& \ln y=\ln \left(1+5 e^{x}\right)^{\frac{1}{x}} \\
& \ln y=\frac{1}{x} \ln \left(1+5 e^{x}\right) \\
& \lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} \frac{\ln \left(1+5 e^{x}\right)}{x}=\lim _{x \rightarrow \infty} \frac{\frac{5 e^{x}}{1+5 e^{x}}}{1}=\lim _{x \rightarrow \infty} \frac{5 e^{x}}{1+5 e^{x}}=1 \\
& \lim _{x \rightarrow \infty} \ln y=1 \text { so } \ln y=1 \quad y=e
\end{aligned}
$$

1988 If $f^{\prime}(x)=\cos x$ and $g^{\prime}(x)=1$ for all x, and if $f(0)=g(0)=0$, then

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{f(x)}{g^{\prime}(x)}
$$

1993 If k is a positive integer, then $\lim _{x \rightarrow+\infty} \frac{e^{k}}{e^{x}}$ is
A) 0
B) 1
C) e
D) k !
E) nonexistent
$\lim _{x \rightarrow+\infty} \frac{e^{k}}{e^{x}}=\lim _{x \rightarrow+\infty} \frac{1}{e^{x}}=0$
$1993 \lim _{n \rightarrow \infty} \frac{3 n^{3}-5 n}{n^{3}-2 n^{2}+1}=3$
$1993 \lim _{x \rightarrow 0} \frac{1-\cos x}{2 \sin ^{2} x}=\lim _{x \rightarrow 0} \frac{-\sin x}{4 \sin x \cos x}=\lim _{x \rightarrow 0} \frac{-1}{4 \cos x}=-\frac{1}{4}$

1993 Let f and g be functions that are differentiable for all real numbers, with $g(x) \neq 0$ for $x \neq 0$. If $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)=0$ and $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, then $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}$ is $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.
$1997 \lim _{h \rightarrow 0} \frac{e^{h}-1}{2 h}=\lim _{h \rightarrow 0} \frac{e^{h}}{2}=\frac{1}{2}$
$1998 \lim _{x \rightarrow 1} \frac{\int_{1}^{x} e^{t^{2}} d t}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{e^{x^{2}}}{2 x}=\frac{e}{2}$
$2003 \lim _{x \rightarrow 0} \frac{e^{x}-\cos x-2 x}{x^{2}-2 x}=\lim _{x \rightarrow 0} \frac{e^{x}+\sin x-2}{2 x-2}=\frac{-1}{-2}=\frac{1}{2}$
$2008 \lim _{x \rightarrow 0} \frac{\sin x \cos x}{x}=\lim _{x \rightarrow 0} \frac{\cos x \cos x-\sin x \sin x}{1}=1-0=1$

2010 \# 5
Consider the differential equation $\frac{d y}{d x}=1-y$. Let $y=f(x)$ be the particular solution to this differential equation with the initial condition $f(1)=0$. For this particular solution, $f(x)<1$ for all values of x.
a) Use Euler's method, starting at $x=1$ with two steps of equal size, to approximate $f(0)$. Show the work that leads to your answer.

Original	$\frac{d y}{d x}$	$d x$	$d y$	New point
$(1,0)$	1	-.5	-.5	$(.5,-.5)$
$(.5,-.5)$	1.5	-.5	-.75	$(0,-1.25)$

b) Find $\lim _{x \rightarrow 1} \frac{f(x)}{x^{3}-1}$. Show the work that leads to your answer.

$$
\begin{gathered}
\lim _{x \rightarrow 1} \frac{f(x)}{x^{3}-1}=\lim _{x \rightarrow 1} \frac{f^{\prime}(x)}{3 x^{2}}=\lim _{x \rightarrow 1} \frac{\frac{d y}{d x}}{3 x^{2}}=\lim _{x \rightarrow 1} \frac{1-y}{3 x^{2}} \\
=\lim _{x \rightarrow 1} \frac{1-0}{3 x^{2}}=\frac{1}{3}
\end{gathered}
$$

c) Find the particular solution $y=f(x)$ to the differential equation $\frac{d y}{d x}=1-y$ with the initial condition $f(1)=0$.

$$
\frac{d y}{d x}=1-y \quad \frac{d y}{1-y}=d x \quad-\ln |1-y|=x+C
$$

Use $(1,0)$ to solve for $C . \quad-\ln |0-1|=1+C \quad 0=1+C \quad C=-1$

$$
-\ln |1-y|=x-1 \quad \ln |1-y|=1-x \quad|1-y|=e^{1-x}
$$

Do we use the positive or negative case of the absolute value?
Plug in the point given $(1,0)$ to work, so we use the positive case.

$$
(1-y)=e^{1-x} \quad-y=-1+e^{1-x} \quad y=1-e^{1-x}
$$

