New 9.1 Sequences

Defined explicitly means that the sequence is defined in terms of n. You can find any term with only the n value.

$$
a_{n}=\frac{n}{5 n-1}
$$

Give the first 5 terms of this sequence:

n	1	2	3	4	5
$\frac{n}{5 n-1}$	$\frac{1}{4}$	$\frac{2}{9}$	$\frac{3}{14}$	$\frac{4}{19}$	$\frac{5}{24}$

Defined recursively: the sequence is defined in terms of previous terms. You can only find the next term.

$$
a_{n}=3 a_{n-1}, a_{1}=2
$$

Give the first 5 terms of this sequence:

n	1	2	3	4	5
$\frac{n}{5 n-1}$	2	6	18	54	162

An arithmetic sequence is where the numbers go up or down by adding or subtracting a number.
Example:

$$
1,4,7,10,13, \ldots \ldots
$$

If a is your first term and you are increasing by a value of d, write a general formula for the sequence recursively.

$$
a_{n}=a_{n-1}+3, a_{1}=1
$$

It can also be written as explicitly as:

$$
a_{n}=a_{1}+(n-1) d \text { where } d \text { is the common difference }
$$

A geometric sequence is where the numbers are increasing or decreasing by a factor of the number right before it.
$1,2,4,8,16, \ldots \ldots$
This can be written recursively as $a_{n}=r a_{n-1}$ where r is the factor being multiplied.
This can also be written explicitly as $a_{n}=a_{1} r^{n-1}$.

Does the sequence approach any specific value?
Let's look at some arithmetic sequences:

$$
\begin{array}{ll}
d=3 & 1,4,7,10,13, \ldots . \\
d=-6 & 1,-5,-11,-17,-23 \ldots \ldots
\end{array}
$$

Arithmetic sequences do not approach a specific value.
Let's look at some geometric sequences:

$$
\begin{array}{ll}
r=2 & 1,2,4,8,16 \ldots \ldots \\
r=-1 & 1,-1,1,-1,1 \ldots \ldots \\
r=\frac{1}{2} & 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8} \ldots \ldots \ldots \\
r=-\frac{1}{3} & 9,-3,1,-\frac{1}{3}, \frac{1}{9} \ldots \ldots
\end{array}
$$

If $-1<r<1$, the sequence approaches a certain value.

If a sequence approaches a certain value, it converges to that value.
If a sequence does not approach a certain value, it diverges.
The best way to see if the sequence converges or diverges is to find $\lim _{n \rightarrow \infty} a_{n}$. This is Bill Gates.
Determine the convergence or divergence of the sequence with the given $n t h$ term. If the sequence converges, find the limit.

$$
\begin{aligned}
& a_{n}=\frac{2 n}{n+3} \quad \lim _{n \rightarrow \infty} a_{n}=\frac{2 n}{n}=2 \\
& a_{n}=(-1)^{n} \frac{n+1}{n^{2}+2} \quad \lim _{n \rightarrow \infty}(-1)^{n} \frac{1}{n}=0 \\
& a_{n}=(1.1)^{n} \quad \text { This diverges as } r=1.1 \text { which is outside of }(-1,1)
\end{aligned}
$$

$$
a_{n}=\cos \left(\frac{n \pi}{2}\right) \quad \text { This diverges because you write it out, it flip flops from }-1 \text { to } 0 \text { to } 1 \text { to } 0 .
$$

The Sandwich Theorem for Sequences

$$
\begin{aligned}
& \text { If } \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L \\
& a_{n} \leq b_{n} \leq c_{n} \text { for all } \mathrm{n}>\mathrm{N} \text {, then } \lim _{n \rightarrow \infty} b_{n}=L .
\end{aligned}
$$

Show that the sequence $\left\{\frac{\cos n}{n}\right\} \quad$ converges.

$$
\begin{aligned}
& \left|\frac{\cos n}{n}\right| \leq \frac{|\cos n|}{|n|} \leq \frac{1}{n} \quad \frac{-1}{n} \leq \frac{\cos n}{n} \leq \frac{1}{n} \\
& \lim _{n \rightarrow \infty} \frac{\cos n}{n}=0 \text { because } \lim _{n \rightarrow \infty}-\frac{1}{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0
\end{aligned}
$$

If the limit exists, the sequence converges.

If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

