New 8.3 Volume

We will find three basic types of volume with variations on each type.
 They are pancakes, donuts and pop-ups.

Pancakes

Pancakes are when you rotate a shape about a vertical or horizontal line. The shape must attach to the line. There cannot be any space between the shape and the line. When you create a pancake, you are basically adding circles together. Usually the radius of the circle is changing. This can also be called a disk.

Rotate $y=x^{2}$ about the x -axis and find the volume from $x=0$ to $x=4$.

The area of a circle is $A=\pi r^{2}$ with this radius being x^{2}.

$$
\int_{0}^{4} \pi\left(x^{2}\right)^{2} d x=\int_{0}^{4} \pi x^{4} d x=\left.\frac{\pi x^{5}}{5}\right|_{0} ^{4}=\frac{4^{5}}{5}-\frac{0^{5}}{5}=\frac{256 \pi}{5}
$$

Rotate $y=\sqrt[3]{x}$ about the x -axis and find the volume from $x=1$ to $x=8$.

The area of a circle is $A=\pi r^{2}$ with this radius being $\sqrt[3]{x}$.

$$
\int_{1}^{8} \pi(\sqrt[3]{x})^{2} d x=\int_{1}^{8} \pi(x)^{\frac{2}{3}} d x=\left.\frac{3 \pi x^{\frac{5}{3}}}{5}\right|_{1} ^{8}=\frac{3 \pi}{5}(32)-\frac{3 \pi}{5}(1)=\frac{92 \pi}{5}
$$

Rotate $y=x^{2}$ about the y-axis and find the volume from $x=0$ to $x=4$.

If we are rotating it about the y-axis, we have to solve for $x . \quad x=\sqrt{y}$
If the x values are going from 0 to 4 , the y values are going from 0 to 2 .
The area of a circle is $A=\pi r^{2}$ with this radius being \sqrt{y}.

$$
\left.\int_{0}^{2} \pi(\sqrt{y})^{2} d y=\int_{0}^{2} \pi y d y=\frac{\pi y^{2}}{2} \right\rvert\, \begin{aligned}
& 2 \\
& 0
\end{aligned}=2 \pi
$$

Donuts

Donuts are created when you are rotating a shape about a line but there is space between the line and the shape. This creates a hole between the two circles that are formed. The function farthest from the axis is the R and the function closest to the axis is the r. The area formed by a donut can be found using the formula $A=\pi\left(R^{2}-r^{2}\right)$. This can also be called a washer.

Let T be the region formed by the line $y=4 x \& y=x$. Rotate T about the x-axis and find the volume from $x=0$ to $x=4$.

$$
y=4 x \text { is farthest from the } x \text {-axis and so } R=4 x
$$

$y=x$ is closest to the axis, so this is my r.
$A=\pi\left(R^{2}-r^{2}\right)=\pi\left((4 x)^{2}-(x)^{2}\right)=15 \pi x^{2}$
To find the volume, we integrate the area.

$$
\int_{0}^{4} 15 \pi x^{2} d x=\frac{15 \pi x^{3}}{3}=\left.5 \pi x^{3}\right|_{0} ^{4}=320 \pi
$$

Let T be the region formed by the line $y=4 \& y=x^{2}$. Rotate T about the x-axis and find the volume from $x=0$ to $x=2$.
$y=4$ is farthest from the x -axis and so $R=4$.

$$
y=x^{2} \text { is closest to the axis, so this is my } r .
$$

$A=\pi\left(R^{2}-r^{2}\right)=\pi\left((4)^{2}-\left(x^{2}\right)^{2}\right)=\pi\left(16-x^{4}\right)$
To find the volume, we integrate the area.

$$
\int_{0}^{2} \pi\left(16-x^{4}\right) d x=16 \pi x-\left.\frac{\pi x^{5}}{5}\right|_{0} ^{2}=64 \pi-\frac{32 \pi}{5}=\frac{288 \pi}{5}
$$

Let T be the region formed by $y=x^{2}$ and $y=4$ from $x=0$ to $x=2$. Rotate T about the line $x=7$ and find the volume.

When you are rotating the figure about $x=7$, you need to change all of functions to $x=$.

$$
\begin{gathered}
y=x^{2} \rightarrow x=\sqrt{y} \\
x=\sqrt{y} \text { is farthest from } x=7 \text { so } R=7-\sqrt{y} \\
\quad x=4 \text { is closest to } x=7 \text { so } r=7-4=3 \\
A=\pi\left(R^{2}-r^{2}\right)=\pi\left((7-y)^{2}-(3)^{2}\right)=\pi\left(49-23 y+y^{2}\right)
\end{gathered}
$$

To find the volume, we integrate the area.

$$
\int_{0}^{2} \pi\left(49-23 y+y^{2}\right) d y=49 \pi y-\frac{23 \pi y^{2}}{2}+\left.\frac{\pi y^{3}}{3}\right|_{0} ^{2}=98 \pi-46 \pi+\frac{8 \pi}{3}=\frac{164 \pi}{3}
$$

Pop-ups

A pop-up is when you have a base shape and then you create another shape that is perpendicular to the base. This is an example of a figure with the base is a circle and the perpendicular shapes are squares.

$$
\begin{aligned}
& x^{2}+y^{2}=4 \\
& y^{2}=4-x^{2} \\
& y=\sqrt{4-x^{2}}
\end{aligned}
$$

You find the area of the perpendicular shape, in this case a square.
$A=s^{2} \quad$ The side is the diameter of the circle $(\mathrm{AB}) . \mathrm{AB}$ is also $2 y=2 \sqrt{4-x^{2}}$
$A=\left(2 \sqrt{4-x^{2}}\right)^{2}=4\left(4-x^{2}\right)=16-4 x^{2}$
If we integrate the area, we get the volume.
$\int_{-2}^{2}\left(16-4 x^{2}\right) d x=16 x-\left.\frac{4 x^{3}}{3}\right|_{-2} ^{2}=16(2)-\frac{4(2)^{3}}{3}-\left(16(-2)-\frac{4(-2)^{3}}{3}\right)=$
$32-\frac{32}{3}+32-\frac{32}{3}=64-\frac{64}{3}=\frac{128}{3}$

Proving the formula for the volume of a sphere.
The perpendicular shapes are circles with Area $-=\pi r^{2}$
Your basic shape is a circle with formula $x^{2}+y^{2}=r^{2}$.
The radius of the perpendicular shape is the diameter of your circle

$$
\begin{array}{r}
\text { or } y=\sqrt{r^{2}-x^{2}} \\
A=\pi\left(\sqrt{r^{2}-x^{2}}\right)^{2}=\pi\left(r^{2}-x^{2}\right)
\end{array}
$$

We will integrate the areas to find the volume.

$$
\begin{aligned}
& \int_{-r}^{r}\left(r^{2}-x^{2}\right) d x=\left.\left(r^{2} x-\frac{x^{3}}{3}\right)\right|_{-r} ^{r}=\left(r^{2} r-\frac{r^{3}}{3}\right)-\left(r^{2}(-r)-\frac{\left(-r^{3}\right)}{3}\right)= \\
& \left(r^{3}-\frac{r^{3}}{3}\right)+\left(r^{3}-\frac{r^{3}}{3}\right)=\frac{2 \pi r^{3}}{3}+\frac{2 \pi r^{3}}{3}=\frac{4 \pi r^{3}}{3}
\end{aligned}
$$

