Calculus 7.5 Partial Fractions

$$
\begin{aligned}
& \frac{1}{3}+\frac{5}{7}=\frac{3(5)+1(5)}{3(7)}=\frac{15+5}{21}=\frac{20}{21} \\
& \frac{2}{x+5}+\frac{7}{x-2}=\frac{2(x-2)+7(x+5)}{(x+5)(x-2)}=\frac{2 x-4+7 x+35}{(x+5)(x-2)}=\frac{9 x+31}{(x+5)(x-2)}=\frac{9 x+31}{x^{2}+3 x-10} \\
& \frac{9 x+31}{x^{2}+3 x-10}=\frac{9 x+31}{(x+5)(x-2)}=\frac{A}{x+5}+\frac{B}{x-2}=\frac{A(x-2)+B(x+5)}{(x+5)(x-2)} \\
& 9 x+31=A(x-2)+B(x-5) \\
& \text { Let } x=2 \quad 9(2)+31=A(2-2)+B(2+5) \quad 49=7 B \quad 7=B \\
& \text { Let } x=-5 \quad 9(-5)+31=A(-5-2)+B(-5+5)-14=-7 A \quad 2=A \\
& \frac{9 x+31}{x^{2}+3 x-10}=\frac{2}{x+5}+\frac{7}{x-2}
\end{aligned}
$$

The purpose of partial fractions is to change the form of the function so that it can be integrated.
If we saw $\int \frac{9 x+31}{x^{2}+3 x-10} d x$ we would write it as

$$
\int \frac{2}{x+5} d x+\int \frac{7}{x-2} d x=2 \ln |x+5|+7 \ln |x-2|+C
$$

$$
\begin{aligned}
& \int \frac{5}{x^{2}-1} d x \quad \frac{5}{x^{2}-1}=\frac{A}{x-1}+\frac{B}{x+1}=\frac{A(x+1)+B(x-1)}{x^{2}-1} \\
& 5=A(x+1)+B(x-1) \\
& \text { Let } x=-1 \quad 5=A(-1+1)+B(-1-1) \quad 5=-2 B \quad-\frac{5}{2}=B \\
& \text { Let } x=1 \quad 5=A(1+1)+B(1-1) \quad 5=2 A \quad \frac{5}{2}=A \\
& \begin{array}{l}
\int \frac{5}{x^{2}-1} d x=\int \frac{\frac{5}{2}}{x-1} d x+\int \frac{-\frac{5}{2}}{x+1} d x=\frac{5}{2} \int \frac{1}{x-1} d x-\frac{5}{2} \int \frac{1}{x+1} d x=\frac{5}{2} \ln |x-1|-\frac{5}{2} \ln |x+1|+C \\
\frac{5}{2} \ln |x-1|-\frac{5}{2} \ln |x+1|+C=\frac{5}{2} \ln \left|\frac{x-1}{x+1}\right|+C=\ln \left|\frac{x-1}{x+1}\right|^{\frac{5}{2}}+C
\end{array} \\
& \int \frac{3 x+2}{(5 x-3)(7-2 x)} d x \quad \frac{3 x+2}{(5 x-3)(7-2 x)}=\frac{A}{5 x-3}+\frac{B}{7-2 x}=\frac{A(7-2 x)+B(5 x-3)}{(5 x-3)(7-2 x)} \\
& 3 x+2=A(7-2 x)+B(5 x-3) \\
& \text { Let } A=\frac{7}{2} \quad 3\left(\frac{7}{2}\right)+2=A\left(7-2\left(\frac{7}{2}\right)\right)+B\left(5\left(\frac{7}{2}\right)-3\right) \\
& \frac{21}{2}+2=B\left(\frac{35}{2}-3\right) \quad \frac{25}{2}=\frac{29}{2} B \quad B=\frac{25}{29} \\
& \text { Let } B=\frac{3}{5} \quad 3\left(\frac{3}{5}\right)+2=A\left(7-2\left(\frac{3}{5}\right)\right)+B\left(5\left(\frac{3}{5}\right)-3\right) \\
& \frac{9}{5}+2=A\left(7-\frac{6}{5}\right) \quad \frac{19}{5}=\frac{29}{5} A \quad A=\frac{19}{29} \\
& \int \frac{3 x+2}{(5 x-3)(7-2 x)}=\int \frac{\frac{19}{29}}{5 x-3} d x+\int \frac{\frac{25}{29}}{7-2 x} d x=\frac{19}{29} \int \frac{1}{5 x-3} d x+\frac{25}{29} \int \frac{1}{7-2 x} d x \\
& \frac{19}{29} \int \frac{1}{5 x-3} d x=\frac{19}{29} \cdot \frac{1}{5} \ln |5 x-3|+C=\frac{19}{145} \ln |5 x-3|+C \\
& \frac{25}{29} \int \frac{1}{7-2 x} d x=\frac{25}{29} \cdot \frac{-1}{2} \ln |7-2 x|+C=\frac{-25}{58} \ln |7-2 x|+C \\
& \frac{19}{145} \ln |5 x-3|+\frac{-25}{58} \ln |7-2 x|+C
\end{aligned}
$$

To combine this into division would be extremely ugly!!!
This is just for the people that think they want ugly. $\ln \left|\frac{(5 x-3)^{\frac{19}{5}}}{(7-2 x)^{\frac{25}{2}}}\right|^{\frac{1}{29}}+C$

Three factors

$$
\begin{aligned}
& \int \frac{5}{x^{3}-4 x} d x \quad \frac{5}{x^{3}-4 x}=\frac{A}{x}+\frac{B}{x-2}+\frac{C}{x+2}=\frac{A(x-2)(x+2)+B x(x+2)+C x(x-2)}{x(x-2)(x+2)} \\
& 5=A(x-2)(x+2)+B x(x+2)+C x(x-2) \\
& \text { Let } x=2 \quad 5=A(2-2)(2+2)+2 B(2+2)+2 C(2-2) \\
& 5=8 B \quad \frac{5}{8}=B \\
& \text { Let } x=0 \quad 5=A(0-2)(0+2)+B(0)(0+2)+C(0)(0-2) \\
& 5=-4 A \quad-\frac{5}{4}=A
\end{aligned} \quad \begin{aligned}
& 5=8 C \quad \frac{5}{8}=C \\
& \text { Let } x=-2 \quad 5=A(-2-2)(-2+2)-2 B(-2+2)-2 C(-2-2) \\
& \int \frac{5}{x^{3}-4 x} d x=\int \frac{-\frac{5}{4}}{x} d x+\int \frac{\frac{5}{8}}{x-2} d x+\int \frac{\frac{5}{8}}{x+2} d x= \\
& -\frac{5}{4} \int \frac{d x}{x}+\frac{5}{8} \int \frac{d x}{x-2}+\frac{5}{8} \int \frac{d x}{x+2}= \\
& -\frac{5}{4} \ln |x|+\frac{5}{8} \ln |x-2|+\frac{5}{8} \ln |x+2|+C \\
& \ln \left|\frac{((x-2)(x+2))^{\frac{5}{8}}}{x^{\frac{5}{4}}}\right|+C=\ln \left|\frac{((x-2)(x+2)}{x^{2}}\right|^{\frac{5}{8}}+C
\end{aligned}
$$

Long Division

When the numerator has a larger power than the denominator, you need to do long division before using partial fractions or something else.

$$
\int \frac{2 x^{3}}{x^{2}-1} d x
$$

$$
\begin{aligned}
& 2 x \\
&\left.x^{2}+0 x-1\right) 2 x^{3}+0 x^{2}+0 x+0 \\
& \frac{2 x^{3}+0 x^{2}-2 x}{2 x} \\
& \frac{2 x^{3}}{x^{2}-1}=2 x+\frac{2 x}{x^{2}-1} \\
& \int \frac{2 x^{3}}{x^{2}-1} d x=\int 2 x d x+\int \frac{2 x}{x^{2}-1} d x \\
& x^{2}+\int \frac{2 x}{x^{2}-1} d x \rightarrow \quad u=x^{2}-1 \\
& \frac{d u}{d x}=2 x \\
& d u=2 x d x \\
& x^{2}+\int \frac{d u}{u}=x^{2}+\ln |u|+C=x^{2}+\ln \left|x^{2}-1\right|+C
\end{aligned}
$$

Repeated factors

$\int \frac{2 x+9}{(x+1)^{3}} d x$ has to be broken down into $\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+1)^{3}}$

$$
\begin{aligned}
& \frac{2 x+9}{(x+1)^{3}}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+1)^{3}} \\
& 2 x+9=A(x+1)^{2}+B(x+1)+C \\
& \text { Let } x=-1 \quad 2(-1)+9=A(-1+1)^{2}+B(-1+1)+C \\
& 7=C
\end{aligned}
$$

$$
\text { Let } x=0 \quad 2(0)+9=A(0+1)^{2}+B(0+1)+C
$$

$$
9=A+B+C
$$

$$
9=A+B+7 \quad 2=A+B
$$

$$
\text { Let } x=1 \quad 2(1)+9=A(1+1)^{2}+B(1+1)+C
$$

$$
11=4 A+2 B+C
$$

$$
11=4 A+2 B+7 \quad 4=4 A+2 B \quad 2=2 A+B
$$

$$
2=A+B \quad-2=-A-B
$$

$$
2=2 A+B \quad 2=2 A+B
$$

$$
0=A
$$

Go back to any equation you have with A, B \& C

$$
\begin{gathered}
9=A+B+C \quad A=0, C=7 \quad 9=0+B+7 \quad B=2 \\
\int \frac{2 x+9}{(x+1)^{3}} d x=\int \frac{0}{x+1} d x+\int \frac{2}{(x+1)^{2}} d x+\int \frac{7}{(x+1)^{3}} d x \\
\int \frac{2 x+9}{(x+1)^{3}} d x=\int \frac{2}{(x+1)^{2}} d x+\int \frac{7}{(x+1)^{3}} d x \\
2 \int(x+1)^{-2} d x+7 \int(x+1)^{-3} d x \\
-2(x+1)^{-1}-\frac{7}{2}(x+1)^{-2}+C
\end{gathered}
$$

$\frac{d P}{d t}=k P(M-P)$ is a logistic differential equation
The P is changing at a rate based on a factor k, the existing amount P and the difference between the carrying capacity M and the existing amount P .
$\frac{d P}{d t}=k P(M-P)$ changes to $P=\frac{M}{1+A e^{-M k t}}$ with a little work.
To do this takes a little work (22 steps) worth 10 Extra Credit points.
$\frac{d P}{d t}=k P(M-P) \quad \frac{d P}{P(M-P)}=k d t \quad \int \frac{d P}{P(M-P)}=\int k d t$
$\int \frac{d P}{P(M-P)}$ uses partial fractions.

$$
\begin{gathered}
\frac{1}{P(M-P)}=\frac{A}{P}+\frac{B}{M-P} \quad \frac{A(M-P)+B P}{P(M-P)} \\
1=A(M-P)+B P \\
\text { Let } P=M \quad 1=A(M-M)+B M \quad 1=B M \quad B=\frac{1}{M} \\
\text { Let } P=0 \quad 1=A(M-0)+B(0) \quad 1=A M \quad A=\frac{1}{M} \\
\int \frac{d P}{P(M-P)}=\int \frac{\frac{1}{M}}{P} d P+\int \frac{\frac{1}{M}}{M-P} d P=\frac{1}{M} \int \frac{1}{P} d P+\frac{1}{M} \int \frac{1}{M-P} d P \\
\frac{1}{M} \ln |P|-\frac{1}{M} \ln |M-P|=k t+C
\end{gathered}
$$

Since P is positive and $M-P$ is positive, we will eliminate the absolute values of the logarithm.
$\ln P-\ln (M-P)=m k t+C$
$\ln \left(\frac{P}{M-P}\right)=m k t+C \quad-\ln \left(\frac{P}{M-P}\right)=-m k t+C \quad \ln \left(\frac{P}{M-P}\right)^{-1}=-m k t+C$
$\ln \left(\frac{M-P}{P}\right)=-m k t+C \quad$ Since $e^{\ln (\text { something })}=$ something
$\frac{M-P}{P}=e^{-m k t+C} \quad \frac{M}{P}-\frac{P}{P}=e^{-m k t+C} \quad \frac{M}{P}=1+e^{-m k t+C}$
$\frac{P}{M}=\frac{1}{1+e^{-m k t+C}} \quad P=\frac{M}{1+e^{-m k t+C}} \quad P=\frac{M}{1+e^{C} e^{-m k t}} \quad$ let $e^{C}=A \quad P=\frac{M}{1+A e^{-m k t}}$

$$
\frac{d P}{d t}=k P(M-P) \text { is equivalent to } P=\frac{M}{1+A e^{-M k t}}
$$

$$
\begin{aligned}
& \text { If } \frac{d P}{d t}=.006 P(200-P) \text { and } P=8 \text { when } \mathrm{t}=0 \text {, solve for } \mathrm{P} \text {. } \\
& \qquad \begin{array}{l}
\quad k=.006 \quad M=200 \\
\quad P=\frac{200}{1+A e^{-200(.006) t}}=\frac{200}{1+A e^{-1.2 t}} \\
8=\frac{200}{1+A e^{-1.2(0)}} \quad 8=\frac{200}{1+A} \\
P=\frac{200}{1+24 e^{-1.2 t}}
\end{array}
\end{aligned}
$$

