### 7.4 Differential Equations

$$
\frac{d y}{d x}=k y
$$

What would this mean? The change in y is a number k times the y value.
If you have a larger y value, your increase would be more.
What real life situation does this model?
The rich get richer.
Solve for y .

$$
\begin{aligned}
& \frac{d y}{d x}=k y \\
& \frac{d y}{y}=k d x \quad \int \frac{d y}{y}=\int k d x \quad \ln |y|+C_{1}=k x+C_{2} \\
& \ln |y|=k x+C \quad|y|=e^{k x+C} \quad y=e^{k x} e^{C} \quad y=C e^{k x} \quad y=y_{0} e^{k x}
\end{aligned}
$$

Does this formula look familiar?
This is the half life formula that was used in Math Analysis. It was also used for interest compounded on a daily basis.

This is called a differential equation. You are given a derivative and you want to solve for the original equation.

$$
\begin{aligned}
\frac{d y}{d x}=\frac{2 x}{y} \quad y d y & =2 x d x \quad \int y d y=\int 2 x d x \\
\frac{y^{2}}{2} & =x^{2}+c \quad y^{2}=2 x^{2}+C \quad y= \pm \sqrt{2 x^{2}+C}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=x y \quad \frac{d y}{y}=x d x \quad \int \frac{d y}{y}=\int x d x \\
& \ln |y|=\frac{x^{2}}{2}+C \quad y=e^{\frac{x^{2}}{2}+C} \quad y=C e^{\frac{x^{2}}{2}}
\end{aligned}
$$

$$
\begin{aligned}
y^{2} d y+x^{3} d x & =0 \quad y^{2} d y=-x^{3} d x \\
\int y^{2} d y & =-\int x^{3} d x \quad \frac{y^{3}}{3}=-\frac{x^{4}}{4}+C \quad y^{3}=-\frac{3 x^{4}}{4}+C \quad y=\sqrt[3]{-\frac{3 x^{4}}{4}+C}
\end{aligned}
$$

$$
\frac{d y}{d x}=x^{8} y^{12} \quad d y=x^{8} y^{12} d x \quad \frac{d y}{y^{12}}=x^{8} d x
$$

$$
\int \frac{d y}{y^{12}}=\int x^{8} d x \quad \frac{y^{-11}}{-11}=\frac{x^{9}}{9}+C \quad y^{-11}=\frac{-11 x^{9}}{9}+C \quad y=\frac{1}{\sqrt[11]{\frac{-11 x^{9}+9 C}{9}}}=\sqrt[11]{\frac{9}{-11 x^{9}+9 C}}
$$

$$
\begin{aligned}
& \frac{2 d y}{d x}=\frac{y(x+1)}{x} \quad \frac{d y}{y}=\frac{(x+1) d x}{2 x} \\
& \quad \int \frac{d y}{y}=\int \frac{(x+1) d x}{2 x} \quad \ln |y|=\frac{1}{2} \int \frac{(x+1) d x}{x} \quad \ln |y|=\frac{1}{2} \int \frac{x}{x} d x+\frac{1}{2} \int \frac{1}{x} d x \\
& \quad \ln |y|=\frac{1}{2} \int d x+\frac{1}{2} \int \frac{1}{x} d x=\frac{1}{2} x+\frac{1}{2} \ln |x|+C \\
& y=e^{\frac{1}{2} x+\frac{1}{2} \ln |x|+C}=e^{\frac{1}{2} x} e^{\ln \sqrt{|x|}} e^{C}=C|x| e^{\frac{1}{2} x}
\end{aligned}
$$

$$
\begin{gathered}
\frac{d y}{d x} \ln x-\frac{y}{x}=0 \quad \frac{d y}{d x} x \ln x-y=0 \quad \frac{d y}{d x} x \ln x=y \quad d y(x \ln x)=y d x \\
\frac{d y}{y}=\frac{d x}{x \ln x} \quad \int \frac{d y}{y}=\int \frac{d x}{x \ln x} \\
\ln |y|=\int \frac{d x}{x \ln x} \quad \text { Use a u substitution and } u=\ln x \quad \frac{d u}{d x}=\frac{1}{x} \quad d u=\frac{x}{d x} \\
\ln |y|=\int \frac{d u}{u} \quad \ln |y|=\ln |u|+C \quad \ln |y|=\ln |\ln x|+C \\
y=e^{\ln |\ln x|+C}=|\ln x| e^{C}=C|\ln x| \\
\frac{d y}{d x}+2 y=6 \quad x=0 \quad w h e n y=1 \quad \frac{d y}{d x}=6-2 y \quad \frac{d y}{6-2 y}=d x \\
\int \frac{d y}{6-2 y}=\int d x \quad u=6-2 y \quad \frac{d u}{d y}=-2 \quad \frac{d u}{-2}=d y \\
\int \frac{d u}{-2} \cdot \frac{1}{u}=\int d x \quad-\frac{1}{2} \ln |u|=x+C \quad \ln |u|=-2 x-2 C \\
\ln |6-2 y|=-2 x-2 C \quad \ln |6-2|=-2(0)-2 C \quad \ln 4=-2 C \quad C=-\frac{\ln 4}{2} \\
\ln |6-2 y|=-2 x-2\left(-\frac{\ln 4}{2}\right) \quad \ln |6-2 y|=-2 x+\ln 4 \\
\ln |6-2 y|-\ln 4=-2 x \quad \ln \frac{6-2 y}{4}=-2 x \quad \frac{6-2 y}{4}=e^{-2 x} \\
6-2 y=4 e^{-2 x} \quad-2 y=-6+4 e^{-2 x} \quad y=3-2 e^{-2 x}
\end{gathered}
$$

