Calculus 7.1 Slope Fields

If you are given the derivative of a function, you can find the function by integrating if it is an easily integrated function. If it is not, you can use an approximation to graph the equation.

One approximation is a slope field. Graph the derivative of the function.

$\frac{dy}{dx} = x$						Connect the lines and
						what shape do you see?
		•				
dy 2						
	•					
$\frac{dy}{dx} = x + y$						
	•	•	•	•	•	
	•	•	•	•	•	
	•					
	•		•	•	·	

•	•	•	•	•
•				•

Another way to approximate the curve given the derivative is called the Euler Method.

Use the chart below to create points that are close to a given point to create a new point.

If $\frac{dy}{dx} = x$ and you know f(0) = 2. Use Euler's method and increments of $\Delta x = .5$ to approximate

f(2).

(<i>x</i> , <i>y</i>)	$\frac{dy}{dx}$	Δx	$\Delta y = \frac{dy}{dx} \left(\Delta x \right)$	$(x + \Delta x, y + \Delta y)$
(0,2)	0	.5	0	(.5,2)
(.5,2)	. 5	.5	. 25	(1, 2.25)
(1, 2.25)	1	.5	.5	(1.5, 2.75)
(1.5, 2.75)	1.5	. 5	. 75	(2, 3.5)

How close is this approximation?

Look at the actual value of f(2).

 $\int_{0}^{2} x dx = f(2) - f(0) \qquad \frac{x^{2}}{2} \Big|_{0}^{2} = \frac{4}{2} - \frac{0}{2} = 2$ $2 = f(2) - 2 \qquad 4 = f(2)$

Our approximation (3.5) is .5 away from the actual value of 4.

How could we have made the approximation closer?

If we had used a smaller Δx .

Find the general solution to the exact differential equation.

$$\frac{dy}{dx} = secxtanx - e^{x} \quad dy = (secxtanx - e^{x})dx$$
$$\int dy = \int (secxtanx - e^{x})dx \qquad y = secx - e^{x} + C$$

$$\frac{dy}{dx} = \frac{1}{x} - \frac{1}{x^2}$$
$$\int dy = \int (\frac{1}{x} - \frac{1}{x^2}) dx \qquad \qquad y = \ln x + \frac{1}{x} + C$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{x}}$$
$$\int dy = \int \left(\frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{x}}\right) dx \qquad y = \sin^{-1}x - 2\sqrt{x} + C$$

$$\frac{dy}{dx} = (\cos x)e^{\sin x}$$
$$\int dy = \int (\cos x)e^{\sin x}dx \qquad y = e^{\sin x} + C$$

Solve the initial value problem explicitly.

$$\frac{dy}{dx} = 2e^x - \cos x \text{ and } y = 3 \text{ when } x = 0$$

$$\int dy = \int (2e^x - \cos x) dx \qquad y = 2e^x - \sin x + C$$

$$3 = 2e^0 - \sin(0) + C \qquad 3 = 2 + C \qquad 1 = C \qquad y = 2e^x - \sin x + 1$$

$$\frac{dy}{dx} = x(3x - 2)$$
 and $y = 0$ when $x = 1$

Foil it out first and then integrate it.

$$\frac{dy}{dx} = 3x^2 - 2x \qquad \int dy = \int (3x^2 - 2x) dx \qquad y = x^3 - x^2 + C$$
$$0 = 1^3 - 1^2 + C \qquad 0 = C \qquad y = x^3 - x^2$$