Calculus 7.1 Slope Fields

If you are given the derivative of a function, you can find the function by integrating if it is an easily integrated function. If it is not, you can use an approximation to graph the equation.

One approximation is a slope field. Graph the derivative of the function.
$\frac{d y}{d x}=x$
Connect the lines and
what shape do you see?
$\frac{d y}{d x}=x^{2}$

$$
\frac{d y}{d x}=x+y
$$

$$
\frac{d y}{d x}=x y
$$

Another way to approximate the curve given the derivative is called the Euler Method.

Use the chart below to create points that are close to a given point to create a new point.
If $\frac{d y}{d x}=x$ and you know $f(0)=2$. Use Euler's method and increments of $\Delta x=.5$ to approximate $f(2)$.

(x, y)	$\frac{d y}{d x}$	Δx	$\Delta y=\frac{d y}{d x}(\Delta x)$	$(x+\Delta x, y+\Delta y)$
$(0,2)$	0	.5	0	$(.5,2)$
$(.5,2)$.5	.5	.25	$(1,2.25)$
$(1,2.25)$	1	.5	.5	$(1.5,2.75)$
$(1.5,2.75)$	1.5	.5	.75	$(2,3.5)$

How close is this approximation?
Look at the actual value of $f(2)$.

$$
\begin{aligned}
& \int_{0}^{2} x d x=f(2)-\left.f(0) \quad \frac{x^{2}}{2}\right|_{0} ^{2}=\frac{4}{2}-\frac{0}{2}=2 \\
& 2=f(2)-2 \quad 4=f(2)
\end{aligned}
$$

Our approximation (3.5) is .5 away from the actual value of 4.

How could we have made the approximation closer?
If we had used a smaller Δx.

Find the general solution to the exact differential equation.

$$
\begin{aligned}
& \frac{d y}{d x}=\sec x \tan x-e^{x} \quad d y=\left(\operatorname{secxtan} x-e^{x}\right) d x \\
& \int d y=\int\left(\sec x \tan x-e^{x}\right) d x \quad y=\sec x-e^{x}+C \\
& \int d y=\int\left(\frac{1}{x}-\frac{1}{x^{2}}\right) d x \\
& \int \frac{d y}{d x}=\frac{1}{x}-\frac{1}{x^{2}} \\
& \int d y=\ln x+\frac{1}{x}+C \\
& \int\left(\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{x}}\right) d x \\
& \int d y=\int(\cos x) e^{\sin x} d x \\
& \int y=\sin ^{-1} x-2 \sqrt{x}+C \\
& \int \frac{1}{\sqrt{1-x^{2}}-\frac{1}{\sqrt{x}}} \\
& \int y=e^{\sin x}+C
\end{aligned}
$$

Solve the initial value problem explicitly.

\[

\]

$$
\frac{d y}{d x}=x(3 x-2) \text { and } y=0 \text { when } x=1
$$

Foil it out first and then integrate it.

$$
\begin{array}{ll}
\frac{d y}{d x}=3 x^{2}-2 x & \int d y=\int\left(3 x^{2}-2 x\right) d x \\
0=1^{3}-1^{2}+C \quad 0=C & y=x^{3}-x^{2}
\end{array}
$$

