New 6.4 Notes
Let $y=\int_{0}^{x} t d t$, what is y^{\prime} ?

$$
y=\left.\frac{t^{2}}{2}\right|_{0} ^{x}=\frac{x^{2}}{2}-0=\frac{x^{2}}{2} \quad y^{\prime}=\frac{2 x}{2}=x
$$

Let $y=\int_{0}^{x} \operatorname{cost} d t$, what is y^{\prime} ?

$$
y=\left.\sin t\right|_{0} ^{x}=\sin x-\sin 0=\sin x \quad y^{\prime}=\cos x
$$

Is there any easier way to solve this problem?
Just put the x in for the t in the integrand (the function being integrated).
Let's try the shortcut method.

$$
\text { Let } y=\int_{0}^{x} e^{t} d t, \text { what is } y^{\prime} ? \quad y^{\prime}=e^{x}
$$

In essence, we are just taking the derivative of the integral and getting the initial function.
Where else does this happen? If you take the square root of a function that is squared, you should get the original function.

Does this shortcut work all of the time?
Let $y=\int_{0}^{x^{2}} 2 t d t$, what is ' $? \quad$ The shortcut says $y^{\prime}=2 x^{2}$.
Let's try it to see if it works.

$$
y=\int_{0}^{x^{2}} 2 t d t=\left.t^{2}\right|_{0} ^{x^{2}}=\left(x^{2}\right)^{2}-0=x^{4} \quad y^{\prime}=4 x^{3}
$$

What are we missing? $\quad 2 \mathrm{x} \quad$ Can I find the 2 x ?
That is the derivative of x^{2}.
Can we create a formula for any function?
Let $y=\int_{0}^{f(x)} g(t) d t, \quad y^{\prime}=f^{\prime}(x) g(f(x))$

Does the lower value have to be a 0 ?

$$
y=\int_{4}^{x} e^{t} d t \quad y=\left.e^{t}\right|_{4} ^{x} \quad y=e^{x}-e^{4} \quad y^{\prime}=e^{x}-0=e^{x}
$$

The bottom value goes away if it is a constant.

What if the bottom value is not a constant?

$$
y=\int_{x}^{x^{2}} \frac{1}{t} d t=\left.\ln t\right|_{x} ^{x^{2}}=\ln x^{2}-\ln x \quad y^{\prime}=\frac{2 x}{x^{2}}-\frac{1}{x}
$$

This is our pattern but we would reduce the x's to $\frac{2}{x}-\frac{1}{x}=\frac{1}{x}$.

Let's create a pattern for a function in the top value and bottom value.
If $y=\int_{g(x)}^{f(x)} h(t) d t, \quad y^{\prime}=f^{\prime}(x) h(f(x))-g^{\prime}(x) h(g(x))$

This is called the Fundamental Theorem of Calculus Part One.

Yeah, this is important.
You will need to know this on the test, I promise.
You will need to know this on the test, I promise.
You will need to know this on the test, I promise.
You will need to know this on the test, I promise.
You will need to know this on the test, I promise.
You will need to know this on the test, I promise.

Oh yes, there is a Part 2.

Fundamental Theorem of Calculus Part Two

If f is continuous at every point of $[\mathrm{a}, \mathrm{b}]$, and if F is any antiderivative of f on $[\mathrm{a}, \mathrm{b}]$,
$\int_{a}^{b} f(x) d x=F(b)-F(a)$
Yeah, this is important.
You will need to know this on the test, I promise.
You will need to know this on the test, I promise.
You will need to know this on the test, I promise.
You will need to know this on the test, I promise.
You will need to know this on the test, I promise.
You will need to know this on the test, I promise.

Let $H(x)=\int_{0}^{x} f(t) d t$, where f is the continuous function with domain [0, 12] graphed here.

Find $H(0) . H(0)$ is the area from 0 to 0 which is 0.

On what interval is H increasing? Explain. H is increasing when $H^{\prime}=f(x)>0$. When the y coordinate is greater than 0 , the function H is increasing. $(0,6)$

On what interval is H concave up? Explain. H is concave up when $H^{\prime \prime}=f^{\prime}$ or the slope of the curve is greater than 0 . This occurs $(10,11)$.

Is $H(12)$ positive or negative? This is the area from 0 to 12 . There is more positive area than negative, so $H(12)$ is positive.

Where does H achieve its maximum value? Explain. H has a maximum when $H^{\prime}(f(x)$ which is the y-value) goes from positive to negative or at an endpoint. Positive to negative occurs when $x=6$. The endpoints are $t=0$ or $t=11 . H(0)=0$ and $H(11)$ is less than $H(6)$ because there is negative area from 6 to 11 . The maximum is at $t=6$.

Where does H achieve its minimum value? Explain. H has a minimum value when $H^{\prime}(f(x)$ which is y-value) goes from negative to positive or at an endpoint. $H^{\prime}(x)$ never goes from negative to positive. $H(0)=0$ and $H(11)>0$ because the area above the x -axis is larger than the area below the x -axis.
f is the differentiable function whose graph is shown in the given figure. The position at $t(\mathrm{sec})$ of a particle moving along a coordinate axis is $s=\int_{0}^{t} f(x) d x$ meters. Use the graph to answer the questions. Give reasons for your answers.

What is the particle's velocity at $t=5$? The velocity is $s^{\prime}=f(x)=2$ at $t=5$.

Is the acceleration of the particle at time $t=5$ positive or negative? The acceleration is $s^{\prime \prime}=$ the slope of the curve. The slope of the curve at $t=5$ is negative so the acceleration is negative.

What is the particle's position at time $t=3$? The position, which is the area under the curve can be found by finding the area of the triangle. $A=\frac{1}{2} b h=\frac{1}{2}(3)(3)=4.5$.

At what time during the first 9 seconds does s have its largest value? s has a maximum when s^{\prime} (which is the y coordinate) goes from positive to negative or at an endpoint. s^{\prime} goes from pos to neg at $6 . s(0)=0$ and $s(9)$ is less than $s(6)$ because it has negative area after 6 .

Approximately when is the acceleration zero? The acceleration is $s^{\prime \prime}$, which is the slope of the curve. The slope of the curve is 0 at $t=4,8$.

When is the particle moving toward the origin? Away from the origin?
The particle is moving in a positive direction (away from the origin) from 0 to 6 seconds. From 6 to 9 seconds, the particle is moving in a negative direction (back towards the origin).

On which side of the origin does the particle lie at time $t=9$? At $t=9$, there is more positive area than negative area, so the particle is to the right of the origin

