New 6.3 Notes

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x \\
& \int_{a}^{a} f(x) d x=0 \\
& \int_{a}^{b} 15 f(x) d x=15 \int_{a}^{b} f(x) d x \\
& \int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \\
& \int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& \int_{1}^{7} f(x) d x=10 \quad \int_{7}^{11} f(x) d x=-11 \quad \int_{1}^{7} g(x) d x=7 \\
& \int_{1}^{1} f(x) d x=0 \quad \int_{7}^{1} f(x) d x=-10 \quad \int_{1}^{7} 6 f(x) d x=60 \\
& \int_{1}^{7} 4 f(x) d x-\int_{1}^{7} 11 g(x) d x=40-77=-37
\end{aligned}
$$

If $y=4 x$, what is the average value (y-value) between $x=2 \& x=8$?
When $\mathrm{x}=2, \mathrm{y}=8$ and when $\mathrm{x}=8, \mathrm{y}=32$.
The average value is $\frac{8+32}{2}=\frac{40}{2}=20$.

Here is another way to find the average value :
If you graph $y=4 x$, the area under the curve is

$$
\int_{2}^{8} 4 x d x=\text { a rectangle with width }(8-2) \text { with height } f(c) \text { which is the }
$$ average height of the function between $x=2 \& x=8$.

$(8-2) f(c)=\int_{2}^{8} 4 x d x$

$$
f(c)=\frac{1}{8-2} \int_{2}^{8} 4 x d x=\frac{1}{6} \int_{2}^{8} 4 x d x=\frac{1}{6}(120)=20
$$

The Mean Value Theorem

If f is continuous on $[a, b]$, then at some point c in $[a, b]$,

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x .
$$

Find the mean value of the function $f(x)=x^{2}-4$ over [1, 4]. Where does the function f actually take on that value in the interval?

$$
\begin{array}{r}
f(c)=\frac{1}{4-1} \int_{1}^{4}\left(x^{2}-4\right) d x=9 \\
x^{2}-4=9 \quad x^{2}=13 \quad x= \pm \sqrt{13} \quad x=\sqrt{13}
\end{array}
$$

Evaluate the integral using anti-derivatives.

$$
\int_{0}^{\pi} \sin x d x=-\left.\cos x\right|_{0} ^{\pi}=-\cos \pi+\cos 0=1+1=2
$$

$$
\int_{1}^{3} 5 d x=\left.5 x\right|_{1} ^{3}=5(3)-5(1)=15-5=10
$$

$$
\int_{1}^{e} \frac{1}{x} d x=\left.\ln x\right|_{1} ^{e}=\ln e-\ln 1=1-0=1
$$

$$
\int_{0}^{\frac{\pi}{4}} \sec ^{2} x d x=\left.\tan x\right|_{0} ^{\frac{\pi}{4}}=\tan \frac{\pi}{4}-\tan 0=1-0=1
$$

$$
\int_{-3}^{1}-\frac{3}{x^{2}} d x=\int_{-3}^{1}-3 x^{-2} d x=\left.3 x^{-1}\right|_{-3} ^{1}=\left.\frac{3}{x}\right|_{-3} ^{1}=\frac{3}{1}-\frac{3}{-3}=3+1=4
$$

