New Calculus 5.5 Linearization and Differentials
Differentiable curves are locally linear.
If you zoom in at a point, you can make any curve into a line.
The Linearization Formula
$L(x)=f(a)+f^{\prime}(a)(x-a)$
What does the formula look like?
Play some Algebra and you get

$$
\begin{array}{ll}
L(x)-f(a)=f^{\prime}(a)(x-a) & \text { This is point slope? } \\
\frac{L(x)-f(a)}{x-a}=f^{\prime}(a) & \text { This is the slope formula. }
\end{array}
$$

Find the linearization of $f(x)=x^{3}-2 x+3$ at $a=2$ and use it to approximate 2.01.
What is $f(2.01)$? What is the error of our approximation?

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-2 \quad f^{\prime}(2)=10 \quad f(2)=7 \\
& L(x)=f(a)+f^{\prime}(a)(x-a) \\
& L(x)=7+10(x-2) \\
& L(2.01)=7+10(2.01-2)=7+10(.01)=7+.1=7.1 \\
& f(2.01)=7.100601
\end{aligned}
$$

The error is .00601 .
Use linearizations to approximate $\sqrt{101}$. What is the actual value and what is the error?
Let $f(x)=\sqrt{x}$ and let $a=100$ as this is the closest perfect square root to 101 .
$f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \quad f^{\prime}(100)=\frac{1}{2 \sqrt{100}}=\frac{1}{20} \quad f(100)=10$
$L(x)=f(a)+f^{\prime}(a)(x-a)=10+\frac{1}{20}(x-100)$
$L(101)=10+\frac{1}{20}(101-100)=10+\frac{1}{20}=10.05$
$f(101)=\sqrt{101}=10.049875$
The error is .000125 .

Newton's Method
The objective of Newton's Method is to find the zero of an equation by using tangent lines.
We will do it without a calculator first to show you how to do it. Then you will realize how easy the calculator method is.

Let $f(x)=x^{3}+3 x+1$.
You guess at what you think the zero might be. Try $x=-1$.
Find the tangent line to $f(x)$ at $x=-1$.
You need a point and a slope.
When $x=-1, y=-3$ and $f^{\prime}(x)=3 x^{2}+3 \quad f^{\prime}(-1)=6$
$y+3=6(x+1) \quad$ Set $y=0$ and solve for x.
$3=6 x+6-3=6 x \quad-\frac{1}{2}=x$
Now do the same thing using $x=-\frac{1}{2}$.

$$
\begin{aligned}
& \text { When } x=-.5 \quad y=-14.25 \text { and } f^{\prime}(x)=3 x^{2}+3 \quad f^{\prime}(-.5)=3.75 \\
& y+14.25=3.75(x+.5) \text { Set } y=0 \text { and solve for } \mathrm{x} . \\
& 14.25=3.75(x+.5) \\
& 3.8=x+.5 \\
& 3.3=x
\end{aligned}
$$

Use the calculator to do this problem.
Enter the function as y_{1} and the derivative as $y_{2} . \quad y_{1}=x^{3}+3 x+1$

$$
y_{2}=3 x^{2}+3
$$

Quit
Store the initial guess as x
-1 sto \rightarrow x Enter
X - Vars (Y-Vars) Function Y_{1} Enter $/ \div$ Vars (Y-Vars) Function Y_{2} Enter Sto $\rightarrow \mathrm{x}$
Keep pressing the enter key until the digits are repeating themselves.
This is your answer.

