Review for 5.4 - 5.6
The sum of two non-negative number is 16 . Find the numbers if
a) the sum of their squares is as large as possible.
b) the sum of their squares is as small as possible.

Let $x=$ the first number and $16-x=$ the second number.

$$
f(x)=x^{2}+(16-x)^{2}
$$

$$
f^{\prime}(x)=2 x-2(16-x)=4 x-32
$$

$$
0=4 x-32 x=8
$$

x	0	8	16
$f^{\prime}(x)$	-	0	+
I, D, LMAX or LMIN	D	L MIN	I
$f(x)$	256	128	256
ABS MAX ABS MIN	ABS	MBS	ABS

c) one number plus the square root of the other is as small as possible.
$f(x)=\sqrt{x}+16-x$
$f^{\prime}(x)=\frac{1}{2 \sqrt{x}}-1=0 \quad \frac{1}{2 \sqrt{x}}=1 \quad 1=2 \sqrt{x} \quad \frac{1}{2}=\sqrt{x} \quad \frac{1}{4}=x$

x	0	$\frac{1}{9}$	$\frac{1}{4}$	16
$f^{\prime}(x)$	Und	+	0	-
I, D, LMAX or LMIN			L	D
$f(x)$	16		MAX	
ABS MAX	L		$16 \frac{1}{4}$	4
ABS MIN	MIN		MBS	ABS

When the numbers are $\frac{1}{4} \& 15 \frac{3}{4}$ the value is the largest.
When the numbers are $16 \& 0$, the value is the smallest.
The area of a rectangle is 25 . Find the dimensions of the smallest perimeter that can be constructed.

Let $x=$ length and $\frac{25}{x}=$ width.
The perimeter $f(x)=2 x+2\left(\frac{25}{x}\right)=2 x+50 x^{-1}$
$f^{\prime}(x)=2-50 x^{-2}=0 \quad \frac{50}{x^{2}}=2 \quad 50=2 x^{2} \quad x^{2}=25 \quad x= \pm 5 \rightarrow x=5$

x	0	1	5	100
$f^{\prime}(x)$	Und	-	0	+
I, D, LMAX or LMIN	X	D	L MIN	I
$f(x)$	X	52	20	200.5
ABS MAX ABS MIN	X		ABS MIN	

When the sides are $5 \& 5$, the perimeter is the smallest.

Find the dimensions that would create the smallest area inscribed under the curve $f(x)=3 \cos 2 x$ with the x -axis at its base.

The area $A=2 x(3 \cos 2 x)=6 x \cos 2 x$.
$A^{\prime}=6(\cos 2 x-2 x \sin x)$
$6(\cos 2 x-2 x \sin x)=0$ at $x=.43$
The dimensions are $2(.43)$ by $3 \cos (.86)=1.68$

Find the dimensions of the lightest square based, open-top, rectangular box that can be made with a volume of $4000 \mathrm{ft}^{3}$.

Let $x=$ the side of the square base.
Let $h=$ the height of the box.
$V=x^{2} h \quad 4000=x^{2} h \quad \frac{4000}{x^{2}}=h$
Surface area $=4$ sides + the base $=4 x\left(\frac{4000}{x^{2}}\right)+x^{2}=S A$
$S A=\frac{16000}{x}+x^{2}=16000 x^{-1}+x^{2}$
$S A^{\prime}=-16000 x^{-2}+2 x=0$
$\frac{16,000}{x^{2}}=2 x \quad 16,000=2 x^{3} \quad 8,000=x^{3} \quad x=20$
The dimensions are 20 by 20 by 10 .

$$
\text { y } \quad x=24, z=26, x^{\prime}=2, y^{\prime}=3
$$

What is z^{\prime} ?

$$
\begin{array}{ll}
x^{2}+y^{2}=z^{2} & x^{2}+y^{2}=z^{2} \\
24^{2}+y^{2}=26^{2} & 2 x x^{\prime}+2 y y^{\prime}=2 z z^{\prime} \\
y=10 & 2(24) 2+2(10)(3)=2(26) z^{\prime} \\
& 96+60=52 z^{\prime} \quad z^{\prime}=\frac{156}{52}=3
\end{array}
$$

A 30 foot ladder is 24 feet from the wall and falling at a rate of $3 \mathrm{ft} / \mathrm{sec}$. How fast is it moving away from the wall? What is the rate of the angle between the ladder and the ground?

X

$$
\left.\begin{array}{cc}
x^{2}+y^{2}=z^{2} & x^{2}+y^{2}=z^{2} \\
24^{2}+y^{2}=30^{2} & 2 x x^{\prime}+2 y y^{\prime}=2 z z^{\prime} \\
y=18 & 2(24)\left(x^{\prime}\right)+2(18)(-3)=0 \\
48 x^{\prime}-108=0 \\
x^{\prime}=\frac{108}{48}=2.25
\end{array}\right] \begin{gathered}
\\
\sin \theta=\frac{y}{z} \quad \sin \theta=\frac{y}{30} \quad 30 \sin \theta=y \quad \cos \theta \theta^{\prime}=y^{\prime} \\
30\left(\frac{24}{30}\right) \theta^{\prime}=-3 \quad 24 \vartheta^{\prime}=-3 \quad \vartheta^{\prime}=-\frac{1}{8} \quad \mathrm{rad} / \mathrm{sec}
\end{gathered}
$$

A conical reservoir with vertex down is leaking water at a rate of $24 \pi \frac{m^{3}}{\text { hour }}$. If the initial height is 12 m and the radius is 6 m , find how fast the radius and height are changing when the height is 5.

$$
\begin{aligned}
& h=2 r \quad \text { If the height is } 5, \text { the radius is } 5 / 2 \\
& V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi r^{2}(2 r)=\frac{2 \pi r^{3}}{3} \\
& V^{\prime}=2 \pi r^{2} r^{\prime} \quad-24 \pi=2 \pi\left(\frac{5}{2}\right)^{2} r^{\prime} \quad-24 \pi=\frac{2 \pi r \prime(25)}{4} \\
& -96 \pi=50 \pi r^{\prime} \quad r^{\prime}=-\frac{96}{50}=-\frac{48}{25}
\end{aligned}
$$

A dinghy (small boat) is being pulled into shore with a rope from a 12 foot dock at a rate of 3 $\mathrm{ft} / \mathrm{sec}$. When the boat is 16 feet from the dock, how fast is the boat approaching the dock?

$$
\begin{aligned}
& x^{2}+y^{2}=z^{2} \quad z=20 \\
& 2 x x^{\prime}+2 y y^{\prime}=2 z z^{\prime} \\
& 2(16) x^{\prime}+2(12)(0)=2(20)(-3) \\
& 32 x^{\prime}=-120 \quad x^{\prime}=-\frac{120}{32}=-\frac{15}{4}
\end{aligned}
$$

The boat is approaching the dock at $\frac{15}{4} \mathrm{ft} / \mathrm{sec}$.

