New 5.2 Calculus Mean Value Theorem
Graph $y=\frac{1}{4} x^{2}$.
Find the slope between $(0,0) \&(4,4) . \frac{4-0}{4-0}=\frac{4}{4}=1$.
The Mean Value Theorem says that there must be a point on the curve $y=\frac{1}{4} x^{2}$ that has a tangent line whose slope is 1 .

To find the slope of the tangent line, you need to take the derivative.

$$
y^{\prime}=\frac{x}{2}
$$

To find the point where the tangent line is parallel to the slope you make the
Derivative at one point equals the slope between two points.

$$
\frac{x}{2}=1 \quad x=2
$$

Graph it and check to see if it works.

The Mean Value Theorem says that if you take two points and draw the line between them, there has to be a point whose tangent line is parallel to the line between the two points.

$$
f^{\prime}(c)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

The derivative at c equals the slope between $\left(x_{1}, y_{1}\right) \&\left(x_{2}, y_{2}\right)$.

If $y=x^{3}-8 x$, find the c value that satisfies the Mean Value Theorem over the interval $[0,4]$.

$$
\begin{aligned}
& f(0)=0 \quad f(4)=16 \quad \frac{16-0}{4-0}=4 \\
& y^{\prime}=3 x^{2}-8 \\
& 3 x^{2}-8=4 \quad 3 x^{2}=12 \quad x^{2}=4 \quad x= \pm 2
\end{aligned}
$$

Staying within the boundaries of $[0,4]$ the answer is $x=2$.

If $=10 \sqrt{x}$, find the c value that satisfies the Mean Value Theorem over the interval $[4,36]$.

$$
\begin{array}{lll}
f(4)=20 & f(36)=60 & m=\frac{60-12}{36-4}=\frac{5}{4} \\
y^{\prime}=\frac{5}{\sqrt{x}} & \frac{5}{\sqrt{x}}=\frac{5}{4} & 20=5 \sqrt{x} \quad 4=\sqrt{x} \quad x=16
\end{array}
$$

Increasing and Decreasing Functions
If $f^{\prime}(x)>0$, the function is increasing.
If $f^{\prime}(x)<0$, the function is decreasing.
THE CHART
Put the x -value boundary endpoints or the x -value domain endpoints in the chart.
Find the derivative.
Find all points where the derivative equals 0 or is undefined.
Make up values to the left and right of the points where the derivative is 0 .
Plug in the x values to $f^{\prime}(x)$ to see if $f^{\prime}(x)>0$ or $f^{\prime}(x)<0$
Note if the function is increasing or decreasing
Determine local maximum or minimums.
Plug in x values for endpoints and local maximum or minimum to find the absolute max or min.

$$
\begin{aligned}
& f(x)=x^{3}+6 x^{2}+9 x-2 \text { over }[-5,3] \\
& f^{\prime}(x)=3 x^{2}+12 x+9 \\
& 0=3 x^{2}+12 x+9 \\
& 0=3\left(x^{2}+4 x+3\right)=(x+3)(x+1) \\
& x=-1,-3 \\
& \quad f^{\prime}(-5)=(-5+3)(-5+1)=(-)(-)=+ \\
& \quad f^{\prime}(-2)=(-2+3)(-2+1)=(+)(-)=- \\
& \qquad f^{\prime}(0)=(0+3)(0+1)=(+)(+)=+ \\
& f(-5)=(-5)^{3}+6(-5)^{2}+9(-5)-2=-125+150-45-2=-22 \\
& f(-3)=(-3)^{3}+6(-3)^{2}+9(-3)-2=-27+54-27-2=-2 \\
& f(-1)=(-1)^{3}+6(-1)^{2}+9(-1)-2=-1+6-9-2=-6 \\
& f(3)=(3)^{3}+6(3)^{2}+9(3)-2=27+54+27-2=106
\end{aligned}
$$

x	-5	-3	-2	-1	0	3
$f^{\prime}(x)$	+	0	-	0	+	+
I or D	I		D		I	I
Local Maximum Or Minimum		Local Maximum		Local Minimum		
$f(x)$	-22	-2		-6		106
Absolute Maximum or Minimum	Absolute Minimum					Absolute Maximum

Anti - Derivatives

If $f(x)=x^{2}$, then $f^{\prime}(x)=2 x$.
The derivative of $f(x)$ is $f^{\prime}(x)$.
If $g^{\prime}(x)=3 x^{2}$, the $g(x)=x^{3}$.
The antiderivative of $g^{\prime}(x)$ is $g(x)$.

Find the antiderivative of the following:

$$
\begin{array}{ll}
f^{\prime}(x)=-\frac{5}{x^{6}} & f(x)=x^{-5}+C \\
f^{\prime}(x)=\frac{4}{x} & f(x)=4 \ln x+C \\
f^{\prime}(x)=\cos (2 x) & f(x)=\frac{1}{2} \sin (2 x)+C \\
f^{\prime}(x)=\frac{7}{1+x^{2}} & f(x)=7 \tan ^{-1} x
\end{array}
$$

