5.1 - 5.3 Review

The absolute minimum value occurs at f(c) when $f(c) \le f(x)$.

Another name for absolute minimum is a global minimum.

The absolute maximum value occurs at f(c) when $f(c) \ge f(x)$.

Another name for absolute maximum is global maximum.

Absolute maximum and minimum values are also called global extrema.

The Extreme Value Theorem says that in a CC curve, there has to be a global maxmum and minimum.

Horizontal tangents occur when f'(x) = 0.

Critical points exist when f'(x) = 0 or f'(x) is undefined.

Absolute maximums and minimums occur at critical points or endpoints.

Points where the y value is greater than anything close to it are local maximums.

Points where the y value is less than anything close to it are local minimums.

Another word for local maximum or minimum is relative maxi or min.

Theorem to remember. If a function f has a local maximum or local minimum at a point c and if

$$f'(c)$$
 exists, then $f'(c) = 0$.

If
$$f'(x) = \frac{ax+b}{cx-d} f'(x) = 0$$
 at $x = -\frac{b}{a}$ $f'(x)$ is undefined at $x = \frac{d}{c}$

What is the Mean Value Theorem in words?

The derivative at one point equals the slope between two points.

What is the Mean Value Theorem formula?

$$f'(c) = \frac{y_1 - y_2}{x_1 - x_2}$$

If f'(x) > 0, f(x) is increasing.

If f'(x) < 0, f(x) is decreasing.

If f'(x) changes from positive to negative at x = 3, there is a local maximum at x = 3.

If f'(x) changes from negative to positive at x = 4, there is a local minimum at x = 4.

If f''(x) < 0, f(x) is concave down.

If f''(x) > 0, f(x) is concave up.

If f''(x) changes from negative to positive at x = 7, there is a point of inflection at x = 7.

If f'(3) = 0, f''(3) = 9, there is local minimum at x = 3.

If f'(9) = 0, $f''(9) = -17.345\pi$, there is a local maximum at x = 9.

A point of inflection is where the concavity changes.

Find the value of *c* that satisfies the Mean Value Theorem for the function $y = x^2 + 6x - 1$ over the interval [-2, 5].

Derivative equals slope. x = -2, y = -9 x = 5, y = 54 $2x + 6 = \frac{54 + 9}{5 + 2} = \frac{63}{7} = 9$ 2x = 3 $x = \frac{3}{2}$

Find the anti-derivatives of

$$f'(x) = -\frac{5}{x^3} = -5x^{-3} \qquad f(x) = \frac{5}{2}x^{-2} + C$$

$$f'(x) = \frac{4}{x} \qquad \qquad f(x) = 4lnx + C$$

$$f'(x) = \sin(7x)$$
 $f(x) = -\frac{1}{7}\cos(7x) + C$

$$f'(x) = \frac{-8}{1+x^2} \qquad \qquad f(x) = 8cot^{-1}x + C \quad or - 8tan^{-1}x + C$$

 $f(x) = x^{3} - 3x^{2} - 24x + 3 \text{ over the interval [-5, 10]}$ $f'(x) = 3x^{2} - 6x - 24 = 0 \qquad 3(x^{2} - 2x - 8) = 0 \qquad x^{2} - 2x - 8 = 0$ $(x - 4)(x + 2) = 0 \qquad x = 4, -2$ $f''(x) = 6x - 6 = 0 \qquad 6x = 6 \qquad x = 1$

					
x	-5	-2	1	4	10
<i>f</i> ′(<i>x</i>)	+	0	-	0	+
I Or D	Ι		D		Ι
Local max or min		Max		Min	
f(x)	-77	31		-77	463
Absolute max or min	Min			Min	Max
<i>f</i> ''(<i>x</i>)	-	-	0	+	+
U or D	U	U		D	D
POI			POI		

This is a f(x) graph.

f(x) is concave up from (2, 4)

f(x) is concave down from (0, 2)

There is a point of inflection at x = 2

This is a f'(x) graph.

f(x) is increasing from (0, 2)

f(x) is decreasing from (2, 4).

The local max is at x = 2

The local min is at x = 0, 4

f(x) is concave up from $(0, 1) \cup (3, 4)$

f(x) is concave down (1,3)

There is a point of inflection at x = 1, 3

This is a f''(x) graph.

f(x) is concave up from (0, 2).

f(x) is concave down from (2, 4).

There is a point of inflection at x = 2.

Concavity is determined by f''(x).