5.1-5.3 Review

The absolute minimum value occurs at $f(c)$ when $f(c) \leq f(x)$.

Another name for absolute minimum is a global minimum.

The absolute maximum value occurs at $f(c)$ when $f(c) \geq f(x)$.

Another name for absolute maximum is global maximum.

Absolute maximum and minimum values are also called global extrema.

The Extreme Value Theorem says that in a CC curve, there has to be a global maxmum and minimum.

Horizontal tangents occur when $f^{\prime}(x)=0$.

Critical points exist when $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined.

Absolute maximums and minimums occur at critical points or endpoints.

Points where the y value is greater than anything close to it are local maximums.

Points where the y value is less than anything close to it are local minimums.

Another word for local maximum or minimum is relative maxi or min.

Theorem to remember. If a function f has a local maximum or local minimum at a point c and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

If $f^{\prime}(x)=\frac{a x+b}{c x-d} f^{\prime}(x)=0$ at $x=-\frac{b}{a} \quad f^{\prime}(x)$ is undefined at $x=\frac{d}{c}$

What is the Mean Value Theorem in words?
The derivative at one point equals the slope between two points.
What is the Mean Value Theorem formula?

$$
f^{\prime}(c)=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}
$$

If $f^{\prime}(x)>0, f(x)$ is increasing.

If $f^{\prime}(x)<0, f(x)$ is decreasing.

If $f^{\prime}(x)$ changes from positive to negative at $x=3$, there is a local maximum at $x=3$.

If $f^{\prime}(x)$ changes from negative to positive at $x=4$, there is a local minimum at $x=4$.

If $f^{\prime \prime}(x)<0, f(x)$ is concave down.

If $f^{\prime \prime}(x)>0, f(x)$ is concave up.

If $f^{\prime \prime}(x)$ changes from negative to positive at $x=7$, there is a point of inflection at $x=7$.

If $f^{\prime}(3)=0, f^{\prime \prime}(3)=9$, there is local minimum at $x=3$.
If $f^{\prime}(9)=0, f^{\prime \prime}(9)=-17.345 \pi$, there is a local maximum at $x=9$.

A point of inflection is where the concavity changes.

Find the value of c that satisfies the Mean Value Theorem for the function $y=x^{2}+6 x-1$ over the interval $[-2,5]$.

Derivative equals slope. $\quad x=-2, y=-9 \quad x=5, y=54$

$$
\begin{gathered}
2 x+6=\frac{54+9}{5+2}=\frac{63}{7}=9 \\
2 x=3 \quad x=\frac{3}{2}
\end{gathered}
$$

Find the anti-derivatives of

$$
\begin{array}{ll}
f^{\prime}(x)=-\frac{5}{x^{3}}=-5 x^{-3} & f(x)=\frac{5}{2} x^{-2}+C \\
f^{\prime}(x)=\frac{4}{x} & f(x)=4 \ln x+C \\
f^{\prime}(x)=\sin (7 x) & f(x)=-\frac{1}{7} \cos (7 x)+C \\
f^{\prime}(x)=\frac{-8}{1+x^{2}} & f(x)=8 \cot ^{-1} x+C \quad \text { or }-8 \tan ^{-1} x+C
\end{array}
$$

$f(x)=x^{3}-3 x^{2}-24 x+3$ over the interval $[-5,10]$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x-24=0 \quad 3\left(x^{2}-2 x-8\right)=0 \quad x^{2}-2 x-8=0 \\
& (x-4)(x+2)=0 \quad x=4,-2 \\
& f^{\prime \prime}(x)=6 x-6=0 \quad 6 x=6 \quad x=1
\end{aligned}
$$

x	-5	-2	1	4	10
$f^{\prime}(x)$	+	0	-	0	+
I Or D	I		D		I
Local max or min		Max		Min	
$f(x)$	-77	31		-77	463
Absolute max or min	Min			Min	Max
$f^{\prime \prime}(x)$	-	-	0	+	+
U or D	U	U		D	D
POI			POI		

This is a $f(x)$ graph.

$f(x)$ is increasing from $(0,2)$
$f(x)$ is decreasing from $(2,4)$

The local max is at $x=4$

The absolute max is at $x=1$
$f(x)$ is concave up from $(2,4)$
$f(x)$ is concave down from $(0,2)$

There is a point of inflection at $x=2$

This is a $f^{\prime}(x)$ graph.

$f(x)$ is increasing from $(0,2)$
$f(x)$ is decreasing from $(2,4)$.

The local max is at $x=2$
The local min is at $x=0,4$
$f(x)$ is concave up from $(0,1) \cup(3,4)$

There is a point of inflection at $x=1,3$

This is a $f^{\prime \prime}(x)$ graph.

$f(x)$ is concave up from $(0,2)$.
$f(x)$ is concave down from $(2,4)$.

There is a point of inflection at $x=2$.

Concavity is determined by $f^{\prime \prime}(x)$.

