Calculus 4.4 Exponential and Logarithmic Functions

 $y = e^x$

Graph it.

Pick points along the graph and graph the derivative.

What is the derivative of $y = e^x$?

Prove your answer using the definition of the derivative.

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{e^{h+x} - e^x}{h} = \frac{e^h e^x - e^x}{h} = \frac{e^x (e^h - 1)}{h} = e^x \lim_{h \to 0} \frac{e^{h} - 1}{h} = e^x$$

What is the derivative of y = lnx?

Start by changing this to exponential form.

$$e^{\gamma} = x.$$

Take the derivative using implicit differentiation.

 $y'e^y = 1 \qquad y' = \frac{1}{e^y} = \frac{1}{x}$

What is the derivative of $y = \log_3 x$?

Start by changing this to exponential form.

 $3^{y} = x$

Take the *ln* of both sides.

$$ln3^y = lnx$$

Use the properties of logarithms.

$$yln3 = lnx$$

Take the derivative of both sides.

$$y'ln3 = \frac{1}{x}$$

Divide by *ln*3.

$$y' = \frac{1}{x \ln 3}$$

The general form of this type of function is if $y = \log_a x$ then $y' = \frac{1}{x \ln a}$.

What is the derivative of $y = 5^x$?

Take the *ln* of both sides.

$$lny = ln5^x$$

Use the properties of logarithms.

lny = xln5

Take the derivative of both sides.

You use implicit with the left side and remember that ln5 is just a number.

$$\frac{y'}{y} = ln5$$

Multiply both sides by *y*.

 $y' = y \ln 5$

Go back to the original problem and see what *y* equals.

$$y' = (ln5)5^x$$

What is the general form to this type of problem?

If
$$y = a^x$$
, $y' = (lna)a^x$

Review

If
$$y = e^x$$
, then $y' = e^x$

If
$$y = lnx$$
, then $y' = \frac{1}{x}$

If
$$y = \log_a x$$
, then $y' = \frac{1}{(\ln a)x}$

If
$$y = a^x$$
, then $y' = (lna)a^x$

Chain Rule Form

If
$$y = e^{f(x)}$$
, then $y' = f'(x)e^x$
If $y = \ln f(x)$, then $y' = \frac{f'(x)}{f(x)}$
If $y = \log_a f(x)$, then $y' = \frac{f'(x)}{(\ln a)f(x)}$
If $y = a^{f(x)}$, then $y' = f'(x)a^{f(x)}$

Logarithmic Differentiation

If $8 = 3^x$, in order to solve for x, you would have to take the natural

logarithm of both sides.

When you are taking a derivative of a function that has an x as a power, you need to use logarithmic differentiation. This means that you would take the natural logarithm of both sides and then take the derivative.

$y = x^x$	
$lny = lnx^{x}$	Use the properties of logarithms to create:
lny = xlnx	Use implicit differentiation with the left side and a product rule on the right side.
$\frac{y'}{y} = x\left(\frac{1}{x}\right) + (1)lnx$	Simplify the right side.
$\frac{y'}{y} = 1 + lnx$	Multiply both sides by y which is x^x .
$y' = x^x (1 + \ln x)$	

Another example

$y = (\sin(5x))^{secx}$	Take the natural log of both sides.
$lny = \ln(\sin(5x))^{secx}$	Use the properties of logarithms.
lny = secxln(sin5x)	Implicit on the left side and product
	rule on the left. Chain rule everywhere.

$$\frac{y'}{y} = secxtanxln(sin5x) + secx\left(\frac{cos5x}{sin5x}\right)(5)$$
 Trig identity.
$$\frac{y'}{y} = secxtanxln(sin5x) + 5secxcot(5x)$$
 Multiply by y.
$$y' = (sin(5x))^{secx}(secxtanxln(sin5x) + 5secxcot(5x))$$