Calculus 4.4 Exponential and Logarithmic Functions

$y=e^{x}$
Graph it.

Pick points along the graph and graph the derivative.

What is the derivative of $y=e^{x}$?
Prove your answer using the definition of the derivative.

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\frac{e^{h+x}-e^{x}}{h}=\frac{e^{h} e^{x}-e^{x}}{h}=\frac{e^{x}\left(e^{h}-1\right)}{h}=\mathrm{e}^{\mathrm{x}} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=e^{x}
$$

What is the derivative of $y=\ln x$?
Start by changing this to exponential form.

$$
e^{y}=x
$$

Take the derivative using implicit differentiation.

$$
y^{\prime} e^{y}=1 \quad y^{\prime}=\frac{1}{e^{y}}=\frac{1}{x}
$$

What is the derivative of $y=\log _{3} x$?
Start by changing this to exponential form.

$$
3^{y}=x
$$

Take the \ln of both sides.

$$
\ln 3^{y}=\ln x
$$

Use the properties of logarithms.

$$
y \ln 3=\ln x
$$

Take the derivative of both sides.

$$
y^{\prime} \ln 3=\frac{1}{x}
$$

Divide by $\ln 3$.

$$
y^{\prime}=\frac{1}{x \ln 3}
$$

The general form of this type of function is if $y=\log _{a} x$ then $y^{\prime}=\frac{1}{x \ln a}$.

What is the derivative of $y=5^{x}$?
Take the \ln of both sides.

$$
\ln y=\ln 5^{x}
$$

Use the properties of logarithms.

$$
\ln y=x \ln 5
$$

Take the derivative of both sides.
You use implicit with the left side and remember that $\ln 5$ is just a number.

$$
\frac{y^{\prime \prime}}{y}=\ln 5
$$

Multiply both sides by y.

$$
y^{\prime}=y \ln 5
$$

Go back to the original problem and see what y equals.

$$
y^{\prime}=(\ln 5) 5^{x}
$$

What is the general form to this type of problem?
If $y=a^{x}, y^{\prime}=(\ln a) a^{x}$

Review

If $y=e^{x}$, then $y^{\prime}=e^{x}$

If $y=\ln x$, then $y^{\prime}=\frac{1}{x}$

If $y=\log _{a} x$, then $y^{\prime}=\frac{1}{(\ln a) x}$

If $y=a^{x}$, then $y^{\prime}=(\ln a) a^{x}$

Chain Rule Form

If $y=e^{f(x)}$, then $y^{\prime}=f^{\prime}(x) e^{x}$
If $y=\ln f(x)$, then $y^{\prime}=\frac{f^{\prime}(x)}{f(x)}$
If $y=\log _{a} f(x)$, then $y^{\prime}=\frac{f^{\prime}(x)}{(\ln a) f(x)}$
If $y=a^{f(x)}$, then $y^{\prime}=f^{\prime}(x) a^{f(x)}$

Logarithmic Differentiation

If $8=3^{x}$, in order to solve for x, you would have to take the natural logarithm of both sides.

When you are taking a derivative of a function that has an x as a power, you need to use logarithmic differentiation. This means that you would take the natural logarithm of both sides and then take the derivative.

$$
y=x^{x}
$$

$$
\ln y=\ln x^{x} \quad \text { Use the properties of logarithms to create: }
$$

$$
\ln y=x \ln x \quad \text { Use implicit differentiation with the left side and a }
$$ product rule on the right side.

$\frac{y^{\prime}}{y}=x\left(\frac{1}{x}\right)+(1) \ln x \quad$ Simplify the right side.
$\frac{y^{\prime}}{y}=1+\ln x \quad$ Multiply both sides by y which is x^{x}.
$y^{\prime}=x^{x}(1+\ln x)$

Another example

$$
\begin{array}{lc}
y=(\sin (5 x))^{\sec x} & \text { Take the natural log of both sides. } \\
\ln y=\ln (\sin (5 x))^{\sec x} & \text { Use the properties of logarithms. } \\
\ln y=\sec x \ln (\sin 5 x) & \text { Implicit on the left side and product } \\
\text { rule on the left. Chain rule everyw } \\
\frac{y^{\prime}}{y}=\sec x \tan x \ln (\sin 5 x)+\sec x\left(\frac{\cos 5 x}{\sin 5 x}\right)(5) & \text { Trig identity. } \\
\frac{y^{\prime}}{y}=\sec x \tan x \ln (\sin 5 x)+5 \sec x \cot (5 x) & \text { Multiply by y. } \\
y^{\prime}=(\sin (5 x))^{\sec x}(\sec x \tan x \ln (\sin 5 x)+5 \sec x \cot (5 x))
\end{array}
$$ rule on the left. Chain rule everywhere.

