Calculus 4.3

Find the derivative of $y=\sin ^{-1} x$.

$$
y=\sin ^{-1} x \rightarrow x=\sin y
$$

Take the derivative of $x=\sin y$.

$$
\begin{gathered}
1=y^{\prime} \cos y \\
\frac{1}{\cos y}=y^{\prime}
\end{gathered}
$$

$$
\begin{aligned}
& \sin ^{2} y+\cos ^{2} y=1 \\
& \cos ^{2} y=1-\sin ^{2} y \\
& \cos y= \pm \sqrt{1-\sin ^{2} y}
\end{aligned}
$$

This is the graph of $y=\sin ^{-1} x$.

The derivative of each x value is positive.
$\cos y=\sqrt{1-\sin ^{2} y}$
$\frac{1}{\sqrt{1-\sin ^{2} y}}=y^{\prime}$
$\frac{1}{\sqrt{1-x^{2}}}=y^{\prime}$

Find the derivative of $y=\cos ^{-1} x$.

$$
y=\cos ^{-1} x \rightarrow x=\cos y
$$

Take the derivative of $x=\cos y$.

$$
\begin{gathered}
1=-y^{\prime} \sin y \\
-\frac{1}{\sin y}=y^{\prime}
\end{gathered}
$$

$$
\sin ^{2} y+\cos ^{2} y=1
$$

$$
\sin ^{2} y=1-\cos ^{2} y
$$

$$
\sin y= \pm \sqrt{1-\cos ^{2} y}
$$

This is the graph of $y=\cos ^{-1} x$.

All of the derivatives of any x value are negative. My formula already has a negative sign in it. We must make the square root positive.
$\sin y=\sqrt{1-\cos ^{2} y}$

$$
\begin{aligned}
& -\frac{1}{\sqrt{1-\cos ^{2} y}}=y^{\prime} \\
& -\frac{1}{\sqrt{1-x^{2}}}=y^{\prime}
\end{aligned}
$$

Find the derivative of $y=\tan ^{-1} x$.

$$
x=\tan y
$$

Take the derivative of $x=$ tany.

$$
\begin{array}{ll}
1=y^{\prime} \sec ^{2} y & \\
\frac{1}{\sec ^{2} y}=y^{\prime} & \sin ^{2} y+\cos ^{2} y=1 \\
& \tan ^{2} y+1=\sec ^{2} y \\
\frac{1}{\tan ^{2} y+1}=y^{\prime} & \\
\frac{1}{x^{2}+1}=y^{\prime} &
\end{array}
$$

Find the derivative of $y=\cot ^{-1} x$.

$$
x=\cot y
$$

Take the derivative of $x=\cot y$.

$$
\begin{aligned}
& 1=-y^{\prime} \csc ^{2} y \\
& -\frac{1}{\csc ^{2} y}=y^{\prime} \\
& \\
& \begin{array}{ll}
\sin ^{2} y+\cos ^{2} y=1 \\
1+\cot ^{2} y=\csc ^{2} y
\end{array} \\
& -\frac{1}{\cot ^{2} y+1}=y^{\prime} \\
& -\frac{1}{x^{2}+1}=y^{\prime}
\end{aligned}
$$

Find the derivative of $y=\sec ^{-1} x$.

$$
y=\sec ^{-1} x \rightarrow x=\sec y
$$

Take the derivative of $x=\sec y$.

$$
\begin{aligned}
& 1=y^{\prime} \text { secytany } \\
& \frac{1}{\text { secytany }}=y^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \sin ^{2} y+\cos ^{2} y=1 \\
& \tan ^{2} y+1=\sec ^{2} y \\
& \tan ^{2} y=\sec ^{2} y-1 \\
& \tan y= \pm \sqrt{\sec ^{2} y-1}
\end{aligned}
$$

This is the graph of $y=\sec ^{-1} x$. The derivative at each value is positive.

$$
\tan y=\sqrt{\sec ^{2} y-1}
$$

$$
\begin{aligned}
& \frac{1}{\sec y \sqrt{\sec ^{2} y-1}}=y^{\prime} \\
& \frac{1}{|x| \sqrt{x^{2}-1}}=y^{\prime}
\end{aligned}
$$

Find the derivative of $y=\csc ^{-1} x$.

$$
y=\csc ^{-1} x \rightarrow x=\csc y
$$

Take the derivative of $x=\csc y$.

$$
\begin{array}{ll}
1=-y^{\prime} \csc y \cot y \\
-\frac{1}{\csc y \cot y}=y^{\prime} & \\
& \sin ^{2} y+\cos ^{2} y=1 \\
& 1+\cot ^{2} y=\csc ^{2} y \\
& \cot ^{2} y=\csc ^{2} y-1 \\
& \cot y= \pm \sqrt{\csc ^{2} y-1}
\end{array}
$$

This is the graph of $y=\csc ^{-1} x$. The derivative at each value is negative. Our answer has a negative sign in it. We just want the positive square root values.

$$
\cot y=\sqrt{\csc ^{2} y-1}
$$

$$
\begin{aligned}
& -\frac{1}{|x| \sqrt{x^{2}-1}}=y^{\prime} \\
& -\frac{1}{|x| \sqrt{x^{2}-1}}=y^{\prime}
\end{aligned}
$$

Review all of the inverse trigonometric derivatives.

$$
\begin{array}{ll}
y=\sin ^{-1} x & y^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \\
y=\cos ^{-1} x & y^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \\
y=\tan ^{-1} x & y^{\prime}=\frac{1}{x^{2}+1} \\
y=\cot ^{-1} x & y^{\prime}=\frac{1}{x^{2}+1} \\
y=\sec ^{-1} x & y^{\prime}=\frac{1}{|x| \sqrt{x^{2}-1}} \\
y=\csc ^{-1} x & y^{\prime}=-\frac{1}{|x| \sqrt{x^{2}-1}}
\end{array}
$$

Do it again in chain rule notation.

$$
\begin{array}{ll}
y=\sin ^{-1} f(x) & y^{\prime}=\frac{f^{\prime}(x)}{\sqrt{1-(f(x))^{2}}} \\
y=\cos ^{-1} f(x) & y^{\prime}=-\frac{f^{\prime}(x)}{\sqrt{1-(f(x))^{2}}} \\
y=\tan ^{-1} f(x) & y^{\prime}=\frac{f^{\prime}(x)}{(f(x))^{2}+1} \\
y=\cot ^{-1} f(x) & y^{\prime}=\frac{f^{\prime}(x)}{(f(x))^{2}+1} \\
y=\sec ^{-1} f(x) & \\
y=\csc ^{-1} f(x) & y^{\prime}=-\frac{f^{\prime}(x)}{|f(x)| \sqrt{(f(x))^{2}-1}} \\
|f(x)| \sqrt{(f(x))^{2}-1}
\end{array}
$$

