Calculus 4.2

Take the derivative of $y=6 x^{2}+7 x+5$.
Using the shortcut, you get $y^{\prime}=12 x+7$.
The derivative of y is y^{\prime}.
What if we have an expression with a y in it?
$x y+3 x-7=0 \quad$ You have a product rule with the $x y$.
The derivative of x is 1 and the derivative of y is y^{\prime}.
$x y^{\prime}+y+3=0 \quad$ Solve for y^{\prime}.
$x y^{\prime}=-y-3$
$y^{\prime}=\frac{-y-3}{x}=-\frac{y+3}{x}$
What if the y is being raised to a power?

$$
\begin{aligned}
& y^{2} \rightarrow 2 y y^{\prime} \\
& y^{3} \rightarrow 3 y^{2} y^{\prime}
\end{aligned}
$$

What if the y is involved in an operation?

```
sin}y->\mp@subsup{y}{}{\prime}\operatorname{cos}
secy }->\mp@subsup{y}{}{\prime}\mathrm{ secytany
```

Every time you have a y in the problem, we have to multiply by a y^{\prime}.

Let's get busy.
Find the derivative of $y^{2}+\frac{1}{y}+13 y=4 x$

$$
\begin{array}{ll}
\text { Rewrite it as } y^{2}+y^{-1}+13 y=4 x & \\
2 y y^{\prime}-y^{-2} y^{\prime}+13 y^{\prime}=4 & \text { Multiply both si } \\
2 y y^{\prime}-\frac{y^{\prime}}{y^{2}}+13 y^{\prime}=4 & \text { Factor out a } y^{\prime} . \\
2 y^{3} y^{\prime}-y^{\prime}+13 y^{2} y^{\prime}=4 y^{2} & \text { Solve for } y^{\prime} . \\
y^{\prime}\left(2 y^{3}-1+13 y^{2}\right)=4 y^{2} & \\
y^{\prime}=\frac{4 y^{2}}{2 y^{3}+13 y^{2}-1} &
\end{array}
$$

Multiply both sides of the equation by y^{2}.

How do we know this works? Let's take a derivative of an equation of a circle and check our derivative.

Find the derivative of $x^{2}+y^{2}=16$

$$
\begin{aligned}
& 2 x+2 y y^{\prime}=0 \\
& 2 y y^{\prime}=-2 x \\
& y^{\prime}=-\frac{2 x}{2 y}=-\frac{x}{y}
\end{aligned}
$$

Let's look at the graph and see if it makes sense.

What is the slope at $(4,0)$?
What is the slope at $(0,4)$?

If I draw tangent lines at those points, you see the slope at $(0,4)$ is 0 because the tangent line is horizontal. The slope at $(4,0)$ is undefined because the tangent line is vertical.

Let's find the second derivative of this equation.

$$
x^{2}+y^{2}=16
$$

We already did the first derivative and got

$$
y^{\prime}=-\frac{x}{y}
$$

Use the quotient rule to find $y^{\prime \prime}$.

$$
y^{\prime \prime}=-\frac{y-x y^{\prime}}{y^{2}}=-\frac{y-x\left(-\frac{x}{y}\right)}{y^{2}}=-\frac{y+\frac{x^{2}}{y}}{y^{2}}=-\frac{y^{2}+x^{2}}{y^{3}}=-\frac{16}{y^{3}}
$$

(We got the 16 from the original equation.)

More practice.
Solve for y^{\prime}.

$$
\begin{aligned}
& \sin y+y^{2}=7 x \\
& y^{\prime} \cos y+2 y y^{\prime}=7 \\
& y^{\prime}(\cos y+2 y)=7 \\
& y^{\prime}=\frac{7}{\cos y+2 y}
\end{aligned}
$$

Even more practice.

Solve for y^{\prime}.

$$
\begin{aligned}
& 4 \cos x \sin y=1 \\
& -4 \sin x \sin y+4 y^{\prime} \cos x \cos y=0 \\
& 4 y^{\prime} \cos x \cos y=4 \sin x \sin y \\
& y^{\prime}=\frac{4 \sin x \sin y}{4 \cos x \cos y}=\text { tanxtany }
\end{aligned}
$$

Find the slope of the tangent line at the point $(1,1)$ for $\left(x^{2}+y^{2}\right)^{2}=4 x y$.

$$
\begin{aligned}
& \left(x^{2}+y^{2}\right)^{2}=4 x y \\
& 2\left(x^{2}+y^{2}\right)\left(2 x+2 y y^{\prime}\right)=4 x y^{\prime}+4 y \\
& 4 x^{3}+4 x y^{2}+4 y y^{\prime} x^{2}+4 y y^{\prime}=4 x y^{\prime}+4 y \\
& 4 y y^{\prime} x^{2}+4 y y^{\prime}-4 x y^{\prime}=4 y-4 x^{3}-4 x y^{2} \\
& 4 y^{\prime}\left(y x^{2}+y-x\right)=4 y-4 x^{3}-4 x y^{2} \\
& y^{\prime}=\frac{4 y-4 x^{3}-4 x y^{2}}{4\left(y x^{2}+y-x\right)}=\frac{y-x^{3}-x y^{2}}{y x^{2}+y-x} \text { at }(1,1)=\frac{1-1-1}{1+1-1}=-1
\end{aligned}
$$

Let's get busy.
Find the derivative of $y^{2}+\frac{1}{y}+13 y=4 x$.
$2 y y^{\prime}-\frac{y^{\prime}}{y^{2}}+13 y^{\prime}=4 \quad$ Multiply both sides by y^{2}.
$2 y^{3} y^{\prime}-y^{\prime}+13 y^{2} y^{\prime}=4 y^{2}$
$y^{\prime}\left(2 y^{3}-1+13 y^{2}\right)=4 y^{2}$
$y^{\prime}=\frac{4 y^{2}}{2 y^{3}-1+13 y^{2}}$

