4.1 Chain Rule

There are two ways to take of a derivative of $y=(x+5)^{2}$. You can foil it out or use the power rule. They should both give the same answer.

$$
\begin{array}{ll}
y=(x+5)^{2} & y=(x+5)^{2} \\
y=x^{2}+10 x+25 & y^{\prime}=2(x+5)=2 x+10 \\
y^{\prime}=2 x+10 &
\end{array}
$$

Let's try another example. $y=(6 x-2)^{2}$

$$
\begin{array}{ll}
y=(6 x-2)^{2} & y=(6 x-2)^{2} \\
y=36 x^{2}-24 x+4 & y^{\prime}=2(6 x-2)=12 x-4 \\
y^{\prime}=72 x-24 &
\end{array}
$$

They are not the same answer. Which answer is right?
The left answer is correct.
What are we missing? If you multiply the right answer by 6 , you will have the same answer.
Where did the 6 come from? That is the derivative of the function being squared $(6 x-2)$.

Create a formula for this concept.

$$
y=(f(x))^{2} \quad y^{\prime}=2(f(x)) f^{\prime}(x)
$$

Let's try another example.
$y=\sin (7 x+9)$ There are two functions here, the sine function and a linear function.
The derivative of $\sin ($ anything) is \cos (anything)
The derivative of $7 x+9$ is 7 .

$$
y^{\prime}=7(\cos (7 x+9)
$$

Create a formula for this concept.

$$
\text { If } y=\sin (f(x)), \quad y^{\prime}=\cos (f(x)) f^{\prime}(x)
$$

Can we create a formula that will deal with any combination of functions?

$$
\text { If } y=f(g(x)), \quad y^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)
$$

This is called the chain rule.

Let's get fancy.
$y=\tan ^{4}(12 x+9)$
There are three functions here.
The function raised to the $4^{\text {th }}$ power, the tangent function and the linear function.
The derivative of (anything) ${ }^{4}$ is $4(\text { anything })^{3} \rightarrow 4\left(\tan ^{3}(12 x+9)\right)$
The derivative of $\tan ($ anything $)$ is $\sec ^{2}($ anything $) \rightarrow \sec ^{2}(12 x+9)$
The derivative of $12 x+9$ is 12
Multiply all of the parts together and you have your answer.

$$
y^{\prime}=48 \tan ^{3}(12 x+9) \sec ^{2}(12 x+9)
$$

The TCC Problem
$y=(5 x-3)^{6}\left(2 x^{3}+9\right)^{8}$
There are two function multiplied together so we will use the product rule.

$$
\begin{array}{rlrl}
f(x) & =(5 x-3)^{6} & g(x) & =\left(2 x^{3}+9\right)^{8} \\
f^{\prime}(x) & =6(5 x-3)^{5}(5) & g^{\prime}(x)=8\left(2 x^{3}+9\right)^{7}\left(6 x^{2}\right) \\
f^{\prime}(x) & =30(5 x-3)^{5} & g^{\prime}(x)=48 x^{2}\left(2 x^{3}+9\right)^{7} \\
f(x) g^{\prime}(x)+f^{\prime}(x) g(x)=(5 x-3)^{6}\left(48 x^{2}\left(2 x^{3}+9\right)^{7}\right)+30(5 x-3)^{5}\left(2 x^{3}+9\right)^{8}
\end{array}
$$

The algebra from here is special.
Factor out the largest common factor from both terms.
$y^{\prime}=(5 x-3)^{5}\left(2 x^{3}+9\right)^{7}\left(48 x^{2}(5 x-3)+30\left(2 x^{3}+9\right)\right)$
$y^{\prime}=(5 x-3)^{5}\left(2 x^{3}+9\right)^{7}\left(240 x^{3}-144 x^{2}+60 x^{3}+270\right)$
Combine like terms and we are done.
$y^{\prime}=(5 x-3)^{5}\left(2 x^{3}+9\right)^{7}\left(300 x^{3}-144 x^{2}+270\right)$

Quick Hitters
$y=(5 x+7)^{\pi} \quad y^{\prime}=5 \pi(5 x+7)^{\pi-1}$
$y=\left(7 x^{2}+9\right)^{8} \quad y^{\prime}=8\left(7 x^{2}+9\right)^{7}(14 x)=112 x\left(7 x^{2}+9\right)^{7}$
$y=\left(9 x^{3}+8 x+7\right)^{4} \quad y^{\prime}=4\left(9 x^{3}+8 x+7\right)^{3}\left(27 x^{2}+8\right)$
$y=\sin 5 x \quad y^{\prime}=5 \cos x$
$y=\cos ^{3} x \quad y^{\prime}=3 \cos ^{2} x(-\sin x)=-3 \sin x \cos ^{2} x$
$y=8 \tan ^{3}(4 x+1)$

$$
y^{\prime}=8\left(3 \tan ^{2}(4 x+1) \sec ^{2}(4 x+1)(4)\right)=96 \tan ^{2}(4 x+1) \sec ^{2}(4 x+1)
$$

$y=.2 \sec ^{4}\left(5 x^{2}+7 x-1\right)$

$$
\begin{aligned}
& y^{\prime}=.2\left(4 \sec ^{3}\left(5 x^{2}+7 x-1\right)\left(\sec \left(5 x^{2}+7 x-1\right) \tan \left(5 x^{2}+7 x-1\right)\right)(10 x+7)\right. \\
& y^{\prime}=.2(10 x+7) \sec ^{4}\left(5 x^{2}+7 x-1\right) \tan \left(5 x^{2}+7 x-1\right)
\end{aligned}
$$

