4.1-4.4 Review

Find the derivative of the following:

$$
\begin{aligned}
& y=b(f(x))^{a} \quad y^{\prime}=a b f^{\prime}(x)(f(x))^{a-1} \\
& y=f(x)+g(x) \quad y^{\prime}=f^{\prime}(x)+g^{\prime}(x) \\
& y=f(x) g(x) \quad y^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
& y=\frac{f(x)}{g(x)} \quad y^{\prime}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \\
& y=e^{\sqrt{\pi}} \quad y^{\prime}=0 \\
& y=\sin f(x) \quad y^{\prime}=f^{\prime}(x) \cos f(x) \\
& y=\cos f(x) \quad y^{\prime}=-f^{\prime}(x) \sin f(x) \\
& y=\operatorname{tanf}(x) \quad y^{\prime}=f^{\prime}(x) \sec ^{2} f(x) \\
& y=\cot f(x) \quad y^{\prime}=-f^{\prime}(x) \csc ^{2} f(x) \\
& y=\sec f(x) \quad y^{\prime}=f^{\prime}(x) \sec f(x) \tan f(x) \\
& y=\csc f(x) \quad y^{\prime}=-f^{\prime}(x) \csc f(x) \cot f(x) \\
& y=f(g(h(x))) \quad y=f^{\prime}(g(h(x))) g^{\prime}(h(x)) h^{\prime}(x) \\
& y=\sin ^{-1} f(x) \quad y^{\prime}=\frac{f^{\prime}(x)}{\sqrt{1-(f(x))^{2}}} \\
& y=\cos ^{-1} f(x) \quad y^{\prime}=-\frac{f^{\prime}(x)}{\sqrt{1-(f(x))^{2}}} \\
& y=\tan ^{-1} f(x) \quad y^{\prime}=\frac{f^{\prime}(x)}{1+(f(x))^{2}} \\
& y=\cot ^{-1} f(x) \quad y^{\prime}=-\frac{f^{\prime}(x)}{1+(f(x))^{2}} \\
& y=\sec ^{-1} f(x) \\
& y^{\prime}=\frac{f^{\prime}(x)}{|f(x)| \sqrt{(f(x))^{2}-1}} \\
& y=\csc ^{-1} f(x) \\
& y^{\prime}=\frac{-f^{\prime}(x)}{|f(x)| \sqrt{(f(x))^{2}-1}} \\
& y=e^{f(x)} \\
& y^{\prime}=f^{\prime}(x) e^{f(x)}
\end{aligned}
$$

$$
\begin{array}{ll}
y=a^{f(x)} & y=f^{\prime}(x) a^{f(x)} \ln a \\
y=\ln f(x) & y=\frac{f^{\prime}(x)}{f(x)} \\
y=\log _{a} f(x) & y=\frac{f^{\prime}(x)}{(\ln a) f(x)}
\end{array}
$$

Find the derivatives.

1) $y=\sin (4 x)$

$$
y^{\prime}=4 \cos (4 x)
$$

2) $y=\sin ^{3}(5 x)$

$$
\begin{aligned}
& y^{\prime}=3 \sin ^{2}(5 x) \cos (5 x)(5) \\
& y^{\prime}=15 \sin ^{2}(5 x) \cos (5 x)
\end{aligned}
$$

3) $y=\sin ^{3}(6 x \tan x)$

$$
\begin{aligned}
& y^{\prime}=3 \sin ^{2}(6 x \tan x) \cos (6 x \tan x)\left(6 \tan x+6 x \sec ^{x}\right. \\
& y^{\prime}=18 \sin ^{2}(6 x \tan x) \cos (6 x \tan x)\left(\tan x+x \sec ^{2} x\right)
\end{aligned}
$$

4) $y=\left(\cos \left(\frac{3 x}{\sec x}\right)\right)^{5}$

$$
\begin{aligned}
& y^{\prime}=-5\left(\cos \left(\frac{3 x}{\sec x}\right)\right)^{4} \sin \left(\frac{3 x}{\sec x}\right)\left(\frac{3 \sec x-3 x \sec x \tan x}{(\sec x)^{2}}\right) \\
& y^{\prime}=-15\left(\cos \left(\frac{3 x}{\sec x}\right)\right)^{4} \sin \left(\frac{3 x}{\sec x}\right)\left(\frac{1-x \tan x}{\sec x}\right)
\end{aligned}
$$

Find and prove the derivative of

$$
\begin{aligned}
& y=\sin ^{-1} x \quad \rightarrow x=\sin y \quad 1=y^{\prime} \cos y \\
& \frac{1}{\cos y}=y^{\prime} \\
& \sin ^{2} y+\cos ^{2} y=1 \\
& \cos ^{2} y=1-\sin ^{2} y \\
& \cos y= \pm \sqrt{1-\sin ^{2} y} \\
& \cos y=\sqrt{1-\sin ^{2} y} \\
& \frac{1}{\sqrt{1-\sin ^{2} y}}=y^{\prime} \quad \frac{1}{\sqrt{1-x^{2}}}=y^{\prime} \\
& y=\cos ^{-1} x \rightarrow x=\cos y \quad 1=-y^{\prime} \sin y \\
& -\frac{1}{\sin y}=y^{\prime} \\
& \sin ^{2} y+\cos ^{2} y=1 \\
& \sin ^{2} y=1-\cos ^{2} y \\
& \sin y= \pm \sqrt{1-\cos ^{2} y} \\
& \sin y=\sqrt{1-\cos ^{2} y} \\
& -\frac{1}{\sqrt{1-\cos ^{2} y}}=y^{\prime} \\
& -\frac{1}{\sqrt{1-x^{2}}}=y^{\prime}
\end{aligned}
$$

$$
\begin{array}{cr}
y=\tan ^{-1} x \quad x=\tan y & 1=y^{\prime} \sec ^{2} y \\
\frac{1}{\sec ^{2} y}=y^{\prime} & \sin ^{2} y+\cos ^{2} y=1 \\
\tan ^{2} y+1=\sec ^{2} y \\
\frac{1}{\tan ^{2} y+1}=y^{\prime} & 1=-y^{\prime} \csc ^{2} y \\
\frac{1}{x^{2}+1}=y^{\prime} \\
y=\cot ^{-1} x \quad x=\operatorname{coty} & \sin ^{2} y+\cos ^{2} y=1 \\
-\frac{1}{\csc ^{2} y}=y^{\prime} & 1+\cot ^{2} y=\csc ^{2} y \\
-\frac{1}{\cot ^{2} y+1}=y^{\prime} & \\
-\frac{1}{x^{2}+1}=y^{\prime}
\end{array}
$$

Find the derivative of $y=\sec ^{-1} x \quad x=\sec y$

$$
\begin{aligned}
& 1=y^{\prime} \sec y \tan y \\
& \frac{1}{\sec y \tan y}=y^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \sin ^{2} y+\cos ^{2} y=1 \\
& \tan ^{2} y+1=\sec ^{2} y \\
& \tan ^{2} y=\sec ^{2} y-1 \\
& \tan y= \pm \sqrt{\sec ^{2} y-1} \\
& \tan y=\sqrt{\sec ^{2} y-1}
\end{aligned}
$$

$$
\frac{1}{\sec y \sqrt{\sec ^{2} y-1}}=y^{\prime}
$$

$$
\frac{1}{|x| \sqrt{x^{2}-1}}=y^{\prime}
$$

Find the derivative of $y=\csc ^{-1} x \quad x=\csc y \quad 1=-y^{\prime} \csc y \cot y$

$$
\begin{array}{ll}
-\frac{1}{\csc y \cot y}=y^{\prime} & \\
& \sin ^{2} y+\cos ^{2} y=1 \\
& 1+\cot ^{2} y=\csc ^{2} y \\
& \cot ^{2} y=\csc ^{2} y-1 \\
& \cot y= \pm \sqrt{\csc ^{2} y-1} \\
& \cot y=\sqrt{\csc ^{2} y-1} \\
-\frac{1}{|x| \sqrt{x^{2}-1}}=y^{\prime} & \\
-\frac{1}{|x| \sqrt{x^{2}-1}}=y^{\prime} &
\end{array}
$$

Find the derivative of $y=e^{x}$.

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\frac{e^{h+x}-e^{x}}{h}=\frac{e^{h} e^{x}-e^{x}}{h}=\frac{e^{x}\left(e^{h}-1\right)}{h}=\mathrm{e}^{\mathrm{x}} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=e^{x}
$$

Find and prove the derivative of $y=\ln x$.

$$
\begin{aligned}
& e^{y}=x . \\
& y^{\prime} e^{y}=1 \quad y^{\prime}=\frac{1}{e^{y}}=\frac{1}{x}
\end{aligned}
$$

Find and prove the derivative of $y=\log _{a} x$.

$$
\begin{aligned}
& a^{y}=x \\
& \ln a^{y}=\ln x \\
& y \ln a=\ln x \\
& y^{\prime} \ln a=\frac{1}{x} \\
& y^{\prime}=\frac{1}{x \ln a}
\end{aligned}
$$

Find and prove the derivative of $y=a^{x}$?

$$
\begin{aligned}
& \ln y=\ln a^{x} \\
& \ln y=x \ln a \\
& \frac{y^{\prime}}{y}=\ln a \\
& y^{\prime}=y \ln a \\
& y^{\prime}=(\ln a) a^{x}
\end{aligned}
$$

Great Problems

$$
\begin{aligned}
& y=\sin x+(\sin x)^{-1}+\sin ^{-1} x+\sin \left(\mathrm{x}^{-1}\right) \\
& y=\sin x+\csc x+\sin ^{-1} x+\sin \left(\mathrm{x}^{-1}\right) \\
& y^{\prime}=\cos x-\csc x \cot x+\frac{1}{\sqrt{1-x^{2}}}-x^{-2} \cos \left(\mathrm{x}^{-1}\right) \\
& y^{\prime}=\cos x-\csc x \cot x+\frac{1}{\sqrt{1-x^{2}}}-\frac{\cos \left(\mathrm{x}^{-1}\right)}{\mathrm{x}^{2}} \\
& y=(\tan x)^{\sin ^{-1} x} \\
& \ln y=\ln (\tan x)^{\sin ^{-1} x} \\
& \ln y=\sin ^{-1} x \ln \tan x
\end{aligned}
$$

$$
\begin{array}{ll}
\sin ^{-1} x & \operatorname{lntan} x \\
\frac{1}{\sqrt{1-x^{2}}} & \frac{\sec ^{2} x}{\tan x} \\
& \frac{\frac{1}{\frac{\cos ^{2} x}{\sin x}} \cos x}{} \\
& \frac{\cos x}{\sin x \cos ^{2} x} \\
& \frac{1}{\sin x \cos x} \\
& \sec x \csc x
\end{array}
$$

$$
\begin{aligned}
& \frac{y \prime}{y}=\sin ^{-1} x \sec x \csc x+\frac{\ln \tan x}{\sqrt{1-x^{2}}} \\
& y^{\prime}=y\left(\sin ^{-1} x \sec x \csc x+\frac{\ln \tan x}{\sqrt{1-x^{2}}}\right) \\
& y^{\prime}=(\tan x)^{\sin ^{-1} x}\left(\sin ^{-1} x \sec x \csc x+\frac{\ln \tan x}{\sqrt{1-x^{2}}}\right) \\
& y=\sqrt{1-x^{2}}+x \sin ^{-1} x \\
& y^{\prime}=\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}}(-2 x)+\frac{x}{\sqrt{1-x^{2}}}+\sin ^{-1} x \\
& y^{\prime}=-\frac{x}{\sqrt{1-x^{2}}}+\frac{x}{\sqrt{1-x^{2}}}+\sin ^{-1} x=\sin ^{-1} x
\end{aligned}
$$

$y^{2}+x y+\frac{1}{y^{2}}=8 x$

$$
2 y y^{\prime}+x y^{\prime}+y-\frac{2 y^{\prime}}{y^{3}}=8
$$

Multiply by y^{3}.

$$
\begin{aligned}
& 2 y^{4} y^{\prime}+x y^{3} y^{\prime}+y^{4}-2 y^{\prime}=8 y^{3} \\
& 2 y^{4} y^{\prime}+x y^{3} y^{\prime}-2 y^{\prime}=8 y^{3}-y^{4} \\
& y^{\prime}\left(2 y^{4}+x y^{3}-2\right)=8 y^{3}-y^{4} \\
& y^{\prime}=\frac{8 y^{3}-y^{4}}{2 y^{4}+x y^{3}-2}
\end{aligned}
$$

Find $y^{\prime \prime}$ if $x^{2}-y^{2}=16$.

$$
\begin{aligned}
& 2 x-2 y y^{\prime}=0 \\
& -2 y y^{\prime}=-2 x \\
& y^{\prime}=\frac{-2 x}{-2 y}=\frac{x}{y} \\
& y^{\prime \prime}=\frac{y-x y^{\prime}}{y^{2}} \\
& y^{\prime \prime}=\frac{y-x\left(\frac{x}{y}\right)}{y^{2}} \quad \text { multiply by } \frac{y}{y} \\
& y^{\prime \prime}=\frac{y^{2}-x^{2}}{y^{3}}=-\frac{x^{2}-y^{2}}{y^{3}}=-\frac{16}{y^{3}}
\end{aligned}
$$

Quick Review Problems

$$
\begin{array}{ll}
y=\ln (\sin x) & y^{\prime}=\frac{\cos x}{\sin x}=\cot x \\
y=e^{\tan x} & y^{\prime}=\left(\sec ^{2} x\right)\left(e^{\tan x}\right)
\end{array}
$$

$$
\begin{array}{ll}
y=\log _{3}\left(\tan ^{-1} x\right) & y^{\prime}=\frac{1}{\ln 3\left(1+x^{2}\right)} \\
y=\sin ^{-1}\left(x^{3}\right) & y^{\prime}=\frac{3 x^{2}}{\sqrt{1-\left(x^{3}\right)^{2}}}=\frac{3 x^{2}}{\sqrt{1-x^{6}}} \\
y=\sec ^{-1}(8 x-1) & y^{\prime}=\frac{8}{|8 x-1| \sqrt{(8 x-1)^{2}-1}} \\
y=\cot ^{-1}\left(e^{x}\right) & y^{\prime}=-\frac{e^{x}}{1+\left(e^{x}\right)^{2}}=-\frac{e^{x}}{1+e^{2 x}} \\
y=5^{x \sin y} & y^{\prime}=\left(y^{\prime} \cos y+x \sin y\right) 5^{x \sin y} \\
& y^{\prime}-y^{\prime} \cos y 5^{x \sin y}=(x \sin y) 5^{x \sin y} \\
& y^{\prime}\left(1-\cos y 5^{x \sin y}\right)=(x \sin y) 5^{x \sin y} \\
& y^{\prime}=\frac{(x \sin y) 5^{x \sin y}}{1-\cos y 5^{x \sin y}}
\end{array}
$$

