New 10.2 Notes
The last section was based on using a geometric series to create an approximation for a curve that would be accurate given an interval of convergence.

Before we get fancy, here is another way to create a power series.

$$
y=\frac{6}{1-x}
$$

Use long division.

$$
\begin{aligned}
& \frac{6+6 x+6 x^{2}+}{} \\
1-x \quad & 6 \\
& \frac{6+6 x}{6 x} \\
& \frac{6 x+6 x^{2}}{6 x^{2}}+6 x^{3}
\end{aligned}
$$

This creates $y=6+6 x+6 x^{2}+6 x^{3}+\cdots+6 x^{n}$

Using the Geometric method where $r=x$ and $a_{1}=6$, you get the same thing.

We are now going to create a series based on the derivatives of the function and centered around a given value of x .

What if $y^{\prime \prime \prime}(0)=6, y^{\prime \prime}(0)=16, y^{\prime}(0)=7 \& y(0)=-2$?
$\int y^{\prime \prime \prime} d x=\int 6 d x=6 x+C$
$y^{\prime \prime}(0)=6 x+C \quad 16=6(0)+C \quad 16=C \quad y^{\prime \prime}(x)=6 x+16$
$\int(6 x+16) d x=3 x^{2}+16 x+C$
$y^{\prime}(0)=3 x^{2}+16 x+C \quad y^{\prime}(0)=7=3 x^{2}+16 x+C \quad C=7$
$y^{\prime}(0)=3 x^{2}+16 x+7$
$\int\left(3 x^{2}+16 x+7\right) d x=x^{3}+8 x^{2}+7 x+C$
$y(0)=x^{3}+8 x^{2}+7 x+C=-2$
$y=x^{3}+8 x^{2}+7 x-2$
Let's check it to see if it works.

$$
\begin{array}{rl}
y=x^{3}+8 x^{2}+7 x-2 & y(0)=-2 \\
y^{\prime}=3 x^{2}+16 x+7 & y^{\prime}(0)=7 \\
y^{\prime \prime}=6 x+16 & y^{\prime \prime}(0)=16 \\
y^{\prime \prime \prime}=6 & y^{\prime \prime \prime}(0)=6
\end{array}
$$

Is there a way to just go straight to the function given the derivatives?

$$
\frac{-2}{0!}+\frac{7 x}{1!}+\frac{16 x^{2}}{2!}+\frac{6 x^{3}}{3!}=-2+7 x+8 x^{2}+x^{3}
$$

This is called a Taylor Polynomial of order three at $x=0$.

The official formula for the Taylor Polynomial of order n centered at $x=0$ is :

$$
P_{n}(x)=f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2}+f^{\prime \prime \prime}(0) \frac{x^{3}}{3!}+f^{\prime \prime \prime \prime}(0) \frac{x^{4}}{4!}+\cdots f^{(n)}(0) \frac{x^{n}}{n!}+\cdots
$$

If the Taylor Polynomial is centered at $x=a$, it looks like this:

$$
P_{n}(x)=f(a)+f^{\prime}(a)(x-a)+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2}+f^{\prime \prime \prime}(a) \frac{(x-a)^{3}}{3!}+f^{\prime \prime \prime \prime}(a) \frac{(x-a)^{4}}{4!}+\cdots f^{(n)}(a) \frac{(x-a)^{n}}{n!}+\cdots
$$

Try $y=e^{x}$ centered at $x=0$.

$$
\begin{array}{ll}
y=e^{x} & y(0)=1 \\
y^{\prime}=e^{x} & y^{\prime}(0)=1 \\
y^{\prime \prime}=e^{x} & y^{\prime \prime}(0)=1 \\
y^{\prime \prime \prime}=e^{x} & y^{\prime \prime \prime}(0)=1 \\
y^{\prime \prime \prime \prime}=e^{x} & y^{\prime \prime \prime \prime}(0)=1 \\
P_{n}(x)=f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2}+f^{\prime \prime \prime}(0) \frac{x^{3}}{3!}+f^{\prime \prime \prime \prime}(0) \frac{x^{4}}{4!}+\cdots f^{(n)}(0) \frac{x^{n}}{n!}+\cdots \\
P_{n}(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \frac{x^{n}}{n!}+\cdots
\end{array}
$$

Try $y=\sin x$ centered at $x=0$.

$$
\begin{array}{ll}
y=\sin x & y(0)=0 \\
y^{\prime}=\cos x & y^{\prime}(0)=1 \\
y^{\prime \prime}=-\sin x & y^{\prime \prime}(0)=0
\end{array}
$$

$$
\begin{gathered}
y^{\prime \prime \prime}=-\cos x \quad y^{\prime \prime \prime}(0)=-1 \\
y^{\prime \prime \prime \prime}=\sin x \quad y^{\prime \prime \prime \prime}(0)=0 \\
P_{n}(x)=f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2}+f^{\prime \prime \prime}(0) \frac{x^{3}}{3!}+f^{\prime \prime \prime \prime}(0) \frac{x^{4}}{4!}+\cdots f^{(n)}(0) \frac{x^{n}}{n!}+\cdots \\
P_{n}(x)=0+x+0\left(\frac{x^{2}}{2}\right)+(-1) \frac{x^{3}}{3!}+(0) \frac{x^{4}}{4!}+\cdots \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\cdots \\
P_{n}(x)=x-\frac{x^{3}}{3!}+\cdots \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
\end{gathered}
$$

Try $y=\cos x$ centered at $x=0$.

$$
\begin{array}{ll}
y=\cos x & y(0)=1 \\
y^{\prime}=-\sin x & y^{\prime}(0)=0 \\
y^{\prime \prime}=-\cos x & y^{\prime \prime}(0)=-1
\end{array}
$$

$$
\begin{gathered}
y^{\prime \prime \prime}=\sin x \quad y^{\prime \prime \prime}(0)=0 \\
y^{\prime \prime \prime \prime}=\cos x \quad y^{\prime \prime \prime \prime}(0)=1 \\
P_{n}(x)=f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2}+f^{\prime \prime \prime}(0) \frac{x^{3}}{3!}+f^{\prime \prime \prime \prime}(0) \frac{x^{4}}{4!}+\cdots f^{(n)}(0) \frac{x^{n}}{n!}+\cdots \\
P_{n}(x)=1+(0) x-\left(\frac{x^{2}}{2}\right)+(0) \frac{x^{3}}{3!}+(1) \frac{x^{4}}{4!}+\cdots \frac{(-1)^{n} x^{2 n}}{(2 n)!}+\cdots \\
P_{n}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots \frac{(-1)^{n} x^{2 n}}{(2 n)!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
\end{gathered}
$$

Could you derive the cosine function by using the sine function?

