10.1 Power Series

An infinite series is defined as an expression in the form of

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{k}+. .=\sum_{k=1}^{\infty} a_{k}
$$

If the sum has a limit as $n \rightarrow \infty$, we say that it converges to the sum S.
If it does not, we say that the series diverges.
Use your calculator to see if these approach a value.
$2^{\text {nd }}$ stat, math, sum
$2^{\text {nd }}$ stat, ops, seq,
$\operatorname{sum}(\operatorname{seq}((f(x), x, 1,100)$
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots$ approaches 1
$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots$ approaches 4.197

Theorems to consider:
If an infinite series converges, then $\lim _{k \rightarrow \infty} a_{k}=0$
If $\lim _{k \rightarrow \infty} a_{k}=0$, then the series (you do not know).
If $\lim _{k \rightarrow \infty} a_{k} \neq 0$, then the series diverges.

What kind of series is $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots$? Geometric
What does it converge to? 1
$\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\cdots$ converges to $\frac{1}{2}$
$\frac{3}{4}+\frac{9}{16}+\frac{27}{64}+\frac{81}{256}+\cdots$ converges to 3
$\frac{5}{2}+\frac{25}{4}+\frac{125}{8}+\frac{625}{16}+\cdots$ converges to infinity

A geometric series will converge to $\frac{a_{1}}{1-r}$ if $-1<r<1$

$$
1+x+x^{2}+x^{3}+x^{4}+\cdots=\frac{1}{1-x}
$$

Put both of these in the calculator and look at the graphs. When do the graphs match? When $-1<x<1$.

$$
1-x+x^{2}-x^{3}+x^{4}+\cdots=\frac{1}{1+x}
$$

Put both of these in the calculator and look at the graphs. When do the graphs match? When $-1<x<1$.

$$
1+x^{2}+x^{4}+x^{6}+x^{8}+\cdots=\frac{1}{1-x^{2}}
$$

Put both of these in the calculator and look at the graphs. When do the graphs match? When $-1<x<1$.

$$
x+x^{2}+x^{3}+x^{4}+\cdots=\frac{x}{1-x}
$$

Put both of these in the calculator and look at the graphs. When do the graphs match?

$$
1+2 x+4 x^{2}+8 x^{3}+16 x^{4}+\cdots=\frac{1}{1-2 x}
$$

Put both of these in the calculator and look at the graphs. When do the graphs match? When $-1<x<1$.

If $y=1+x+x^{2}+x^{3}+x^{4}+\cdots=\frac{1}{1-x}$

$$
\text { then } y^{\prime}=\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}
$$

Put both of these in the calculator and look at the graphs. When do the graphs match? When $-1<x<1$.

If $y=1-x+x^{2}-x^{3}+x^{4}+\cdots=\frac{1}{1+x}$

$$
\text { then } \int y=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}=\int \frac{1}{\mathrm{x}} \mathrm{dx}=\ln (1+x)
$$

Put both of these in the calculator and look at the graphs. When do the graphs match? When $-1<x<1$.

$$
\begin{aligned}
& f(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \frac{x^{n}}{n!}+\cdots \\
& f^{\prime}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \frac{x^{n}}{n!}+\cdots \\
& \int f(x)=x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \frac{x^{n}}{n!}+\cdots+C \\
& f(0)=1
\end{aligned}
$$

What is $f(x) ? \quad e^{x}$

Put both of these in the calculator and look at the graphs. When do the graphs match?

