
Free Response Questions for Taylor or Maclaurin Series  

1) 1990  

Let   be the function defined by  ( )  
 

   
  

a) Write the first four terms and the general term of the Taylor series 

expansion of  ( ) about      

Use a geometric series.   ( )  
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b) Use the result from part (a) to find the first four terms and the general 

term of the series expansion about     for   |   |. 
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2) 1996 . 

The Maclaurin series for  ( ) is given by   
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a) Find   ( ) and  (  )( ). 
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b) Let  ( )    ( ).  Write the Maclaurin series for  ( ), showing the 

first three nonzero terms and the general term. 
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c) Write  ( ) in terms of a familiar function without using series.  The 

write  ( ) in terms of the same familiar function. 
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3) 1979 

Let   be the function defined by  ( )  
 

    
 

a) Write the first four terms and the general term of the Taylor expansion of 

 ( ) about       

Geometric Series  ( )    (  )  (  )  (  )    (  )  

      Taylor Series 
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4) 1991 

Let   be the function given by  ( )  
 

    
 and   be the function given by 

( )  ∫  ( )  
 

 
 . 

a) Find the first four nonzero terms and the general term for the power 

series expansion of  ( ) about      

Geometric with           

  ( )                  (  )        

 

b) Find the first four nonzero terms of  ( ) about      
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5) 1982 

a) Write the Taylor series expansion about     for  ( )     (   ).   

Include an expression for the general term. 
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b) Use the expression found in part (a) to determine the logarithmic function 

whose Taylor series is ∑
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6) 1983 

Consider the power series ∑    
  

   , where      and    (
 

 
)      for 

       

a) Find the first four terms and the general term of the series. 
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b) If  ( )  ∑    
  

   , find the value of   ( )  
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7) 1986 

a) Find the first four nonzero terms in the Taylor series expansion about 

    for  ( )  √   . 
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b) Use the series result in part (a) to find the first four nonzero terms in the 

Taylor series expansion about     for  ( )  √    . 
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c) Find the first four nonzero terms in the Taylor series expansion about 

    for the function   such that   ( )  √     and  ( )     

 ( )  ∫ ( ) 
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8) 1987 

a) Find the first five terms in the Taylor series about     for  ( )  
 

    
  

Geometric 

             ( )    (  )  (  )  (  )  (  )  

 

b) Use partial fractions and the result from part (a) to find the first five 

terms in the Taylor series about     for  ( )  
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9) 1993 

Let   be the function given by  ( )   
 

   

 

a) Write the first four nonzero terms and the general term for the Taylor 

series expansion of  ( ) about      
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b) Use the result from part (a) to write the first three nonzero terms and the 

general term of the series expansion about     for  ( )  
 
 
   

 
  

 
 
             

 

 
 

  

( )  
 

  

( )  
   

  

    
 

     ( )  
 
 
   

 
 

(  
 

 
 

  

( )  
 

  

( )  
   

  

    
)  

 
 

      ( )  (
 

  
 

  

( )   
 

  

( )   
   

  

     
) 

      ( )  (
 

 
 

 

( )  
 

  

( )  
   

    

    
) 

 

 

 

 

 

 



c) For the function   in part (b), find   ( ) and use it to show that  
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10) 1994 

Let   be the function given by  ( )       
  

a) Find the first four nonzero terms and the general term of the power 

series for  ( ) about      
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11) 2002    

The Maclaurin series for the function   is given by  

 ( )  ∑
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b) Find the first four terms and the general term for the Maclaurin 

series for   ( ). 

  ( )                   (  )    

 

c) Use the Macluarin series you found in part (b) to find the value of 

  ( 
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Taylor Series 
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12) 2003 

The function   is defined by the power series 

  ( )  ∑
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a) Find   ( ) and    ( ).  Determine whether    has a local 

maximum, a local minimum, or neither at    .  Give a reason for 

your answer. 

  ( ) is the coefficient of the   term    

   ( )   (the coefficient of the    term)   ( 
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  has a local maximum at     because   ( )    and    ( )     

b) Show that    ( ) is a solution to the differential equation 

          . 

 

    
  

  
 

  

  
 

  

  
   

(  )    

(    ) 
 

                         
  

  
 

   

  
 

   

  
   

(  )(  )      

(    ) 
 

     
   

  
 

   

  
 

   

  
   

(  )(  )    

(    ) 
 

       
  

  
 

  

  
 

  

  
   

(  )    

   
 

 



  
  

  
 

  

  
 

  

  
   

(  )    

(    ) 
  

   

  
 

   

  
 

   

  
   

(  )(  )    

(    ) 
   

  

  
 

  

  
 

  

  
   

(  )    

   
 

 

 

 

 

 

 

 

 

13) 2005 

Let   be a function with derivatives of all orders and for which 

 ( )   .  When   is odd, the nth derivative of   at     is given by 

 ( )( )  
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a) Write the sixth-degree Taylor polynomial for   about      

 

 

 

 

 

 

 

 

 

b) In the Taylor series for   about    , what is the coefficient of 

(   )   for    ? 

 



 

 

 

 

 

 

 

   

 

    


