Free Response Questions for Taylor or Maclaurin Series

1) 1990

Let f be the function defined by $f(x)=\frac{1}{x-1}$.
a) Write the first four terms and the general term of the Taylor series expansion of $f(x)$ about $x=2$.

Use a geometric series. $f(x)=\frac{1}{x-1}=\frac{1}{1+(x-2)}$.

$$
f(x)=1-(x-2)+(x-2)^{2}-(x-2)^{3}+\cdots+(-1)^{n+1}(x-2)^{n}
$$

Use Taylors

$$
\begin{array}{ll}
f(x)=\frac{1}{x-1}=(x-1)^{-1} & f(2)=\frac{1}{2-1}=1 \\
f^{\prime}(x)=-(x-1)^{-2}=-\frac{1}{(x-1)^{2}} & f^{\prime}(2)=-1 \\
f^{\prime \prime}(x)=2(x-1)^{-3}=\frac{2}{(x-1)^{3}} & f^{\prime \prime}(2)=2 \\
f^{\prime \prime \prime}(x)=-6(x-1)^{-4}=\frac{-6}{(x-1)^{4}} & f^{\prime \prime \prime}(2)=-6 \\
f(2)+\frac{f^{\prime}(2)}{1!}(x-2)+\frac{f^{\prime \prime}(2)}{2!}(x-2)^{2}+\frac{f^{\prime \prime \prime}(2)}{3!}(x-2)^{3} \\
f(2)+\frac{(-1)}{1!}(x-2)+\frac{(2) f^{\prime \prime}(2)}{2!}(x-2)^{2}+\frac{(-6) f^{\prime \prime \prime}(2)}{3!}(x-2)^{3} \\
1-(x-2)+(x-2)^{2}-(x-2)^{3}+\cdots+(-1)^{n+1}(x-2)^{n}
\end{array}
$$

b) Use the result from part (a) to find the first four terms and the general term of the series expansion about $x=2$ for $\ln |x-1|$.

$$
\begin{gathered}
\ln (x-1)=-\int_{1}^{\infty} f(x) d x \\
C+x-\frac{(x-2)^{2}}{2}+\frac{(x-2)^{3}}{3}-\frac{(x-2)^{4}}{4}+\cdots+\frac{(-1)^{n+1}(x-2)^{n+1}}{n+1}
\end{gathered}
$$

When $x=2 \quad \ln (x-1)=\ln (2-1)=\ln 1=0, C=-2$
$\ln (x-1)=-2+x-\frac{(x-2)^{2}}{2}+\frac{(x-2)^{3}}{3}-\frac{(x-2)^{4}}{4}+\cdots+\frac{(-1)^{n+1}(x-2)^{n+1}}{n+1}$
2) 1996 .

The Maclaurin series for $f(x)$ is given by $1+\frac{x}{2!}+\frac{x^{2}}{3!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{(n+1)!}+\cdots$
a) Find $f^{\prime}(0)$ and $f^{(17)}(0)$.

$$
\begin{gathered}
f^{\prime}(0) \frac{x}{1!}=\frac{x}{2!}, f^{\prime}(0)=\frac{1}{2} \\
f^{(17)}(0) \frac{x^{17}}{17!}=\frac{x^{17}}{18!} \quad f^{(17)}(0)=\frac{1}{18}
\end{gathered}
$$

b) Let $g(x)=x f(x)$. Write the Maclaurin series for $g(x)$, showing the first three nonzero terms and the general term.

$$
g(x)=x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{3!}+\cdots+\frac{x^{n+1}}{(n+1)!}+\cdots
$$

c) Write $g(x)$ in terms of a familiar function without using series. The write $f(x)$ in terms of the same familiar function.

$$
\begin{aligned}
& g(x)=e^{x}-1 \\
& f(x)=\frac{e^{x}-1}{x}
\end{aligned}
$$

3) 1979

Let f be the function defined by $f(x)=\frac{1}{1-2 x}$
a) Write the first four terms and the general term of the Taylor expansion of $f(x)$ about $x=0$.

Geometric Series

$$
f(x)=1+(2 x)+(2 x)^{2}+(2 x)^{3}+\cdots+(2 x)^{n}
$$

Taylor Series

$$
\begin{array}{ll}
f(x)=\frac{1}{1-2 x}=(1-2 x)^{-1} & f(0)=\frac{1}{1-2(0)}=1 \\
f^{\prime}(x)=2(1-2 x)^{-2} & f^{\prime}(0)=2 \\
f^{\prime \prime}(x)=8(1-2 x)^{-3} & f^{\prime \prime}(0)=8 \\
f^{\prime \prime \prime}(x)=48(1-2 x)^{-4} & f^{\prime \prime \prime}(0)=48 \\
f(x)=1+2 x+\frac{8 x^{2}}{2}+\frac{48 x^{3}}{6}+\cdots+ \\
& f(x)=1+2 x+4 x^{2}+8 x^{3}+\cdots+2^{n} x^{n}
\end{array}
$$

4) 1991

Let f be the function given by $f(t)=\frac{4}{1+t^{2}}$ and G be the function given by $(x)=\int_{0}^{x} f(t) d t$.
a) Find the first four nonzero terms and the general term for the power series expansion of $f(t)$ about $t=0$.

Geometric with $a=4, r=-t^{2}$

$$
f(t)=4-4 t^{2}+4 t^{4}-4 t^{6}+\cdots+(-1)^{n} 4 t^{2 n}+\cdots
$$

b) Find the first four nonzero terms of $G(x)$ about $x=0$.

$$
G(x)=4 x-\frac{4 x^{3}}{3}+\frac{4 x^{5}}{5}-\frac{4 x^{7}}{7}+\cdots+(-1)^{n} \frac{4 x^{2 n+1}}{2 n+1}+\cdots
$$

5) 1982
a) Write the Taylor series expansion about $x=0$ for $f(x)=\ln (1+x)$. Include an expression for the general term.

$$
\begin{array}{cl}
f(x)=\ln (1+x) & f(0)=0 \\
f^{\prime}(x)=\frac{1}{1+x} & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=-(1+x)^{-2} & f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x)=2(1+x)^{-3} & f^{\prime \prime \prime}(0)=2 \\
f(x)=0+x-\frac{x^{2}}{2}+\frac{2 x^{3}}{6}+\cdots \\
f(x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots+(-1)^{n+1} \frac{x^{n}}{n}+\cdots
\end{array}
$$

b) Use the expression found in part (a) to determine the logarithmic function whose Taylor series is $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2 n}}{2 n}$.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2 n}}{2 n}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}\left(x^{2}\right)^{n}}{n} \\
& \frac{1}{2} \ln \left(1+x^{2}\right)=\ln \left(\sqrt{1+x^{2}}\right)
\end{aligned}
$$

6) 1983

Consider the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$, where $a_{0}=1$ and $a_{n}=\left(\frac{7}{n}\right) a_{n-1}$ for $n \geq 1$.
a) Find the first four terms and the general term of the series.

$$
1+7 x+\frac{49 x^{2}}{2}+\frac{343 x^{3}}{6}+\cdots+\frac{(7 x)^{n}}{n!}+\ldots
$$

b) If $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, find the value of $f^{\prime}(1)$.

$$
\begin{aligned}
& f^{\prime}(x)=7+7^{2}+\frac{7^{3}}{2!}+\frac{7^{4}}{3!}+\frac{7^{5}}{4!}+\cdots \frac{7^{n+1}}{n!} \\
& f^{\prime}(1)=7\left(1+7+\frac{7^{2}}{2!}+\frac{7^{3}}{3!}+\frac{7^{4}}{4!}+\cdots+\frac{7^{n}}{n!}\right) \\
& \text { Since } e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{n}}{n!} \\
& 1+7+\frac{7^{2}}{2!}+\frac{7^{3}}{3!}+\frac{7^{4}}{4!}+\cdots+\frac{7^{n}}{n!}=e^{7} \\
& f^{\prime}(1)=7 e^{7}
\end{aligned}
$$

7) 1986
a) Find the first four nonzero terms in the Taylor series expansion about $x=0$ for $f(x)=\sqrt{1+x}$.

$$
\begin{array}{cc}
f(x)=\sqrt{1+x}=(1+x)^{\frac{1}{2}} & f(0)=1 \\
f^{\prime}(x)=\frac{1}{2 \sqrt{1+x}}=\frac{1}{2}(1+x)^{-\frac{1}{2}} & f^{\prime}(0)=\frac{1}{2} \\
f^{\prime \prime}(x)=-\frac{1}{4}(1+x)^{-\frac{3}{2}} & f^{\prime \prime}(0)=-\frac{1}{4} \\
f^{\prime \prime \prime}(x)=\frac{3}{8}(1+x)^{-\frac{5}{2}} & f^{\prime \prime \prime}(0)=\frac{3}{8} \\
f(x)=f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2!}+f^{\prime \prime \prime}(0) \frac{x^{3}}{3!} & \\
1+\frac{x}{2}-\frac{1 x^{2}}{4(2!)}+\frac{3 x^{3}}{(8) 3!}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16} &
\end{array}
$$

b) Use the series result in part (a) to find the first four nonzero terms in the Taylor series expansion about $x=0$ for $g(x)=\sqrt{1+x^{3}}$.

$$
g(x)=1+\frac{x^{3}}{2}-\frac{x^{6}}{8}+\frac{x^{9}}{16}
$$

c) Find the first four nonzero terms in the Taylor series expansion about $x=0$ for the function h such that $h^{\prime}(x)=\sqrt{1+x^{3}}$ and $h(0)=4$.

$$
\begin{aligned}
& h(x)=\int g(x) \\
& h(x)=4+x+\frac{x^{4}}{8}-\frac{x^{7}}{56}
\end{aligned}
$$

8) 1987

a) Find the first five terms in the Taylor series about $x=0$ for $f(x)=\frac{1}{1-2 x}$.

Geometric

$$
r=2 x \quad f(x)=1+(2 x)+(2 x)^{2}+(2 x)^{3}+(2 x)^{5}
$$

b) Use partial fractions and the result from part (a) to find the first five terms in the Taylor series about $x=0$ for $g(x)=\frac{1}{(1-2 x)(1-x)}$.

$$
\begin{gathered}
\frac{1}{(1-2 x)(1-x)}=\frac{A}{1-2 x}+\frac{B}{1-x} \\
A(1-x)+B(1-2 x)=1 \\
\operatorname{Let} x=1 \quad-B=1 \quad B=-1 \\
\text { Let } x=\frac{1}{2} \quad \frac{1}{2} A=1 \quad A=2 \\
\frac{1}{(1-2 x)(1-x)}=\frac{2}{1-2 x}-\frac{1}{1-x} \\
\mathrm{~g}(\mathrm{x})=2\left(1+(2 \mathrm{x})+(2 \mathrm{x})^{2}+(2 x)^{3}+(2 x)^{4}\right)-\left(1+x+x^{2}+x^{3}+x^{4}\right) \\
g(x)=1+3 x+7 x^{2}+15 x^{3}+31 x^{4}
\end{gathered}
$$

9) 1993

Let f be the function given by $f(x)=e^{\frac{x}{2}}$.
a) Write the first four nonzero terms and the general term for the Taylor series expansion of $f(x)$ about $x=0$.

$$
\begin{aligned}
& \text { Since } e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!} \\
& \qquad \begin{aligned}
e^{\frac{x}{2}}= & 1+\frac{x}{2}+\frac{\left(\frac{x}{2}\right)^{2}}{2!}+\frac{\left(\frac{x}{2}\right)^{3}}{3!}+\cdots+\frac{\left(\frac{x}{2}\right)^{n}}{n!} \\
& 1+\frac{x}{2}+\frac{x^{2}}{(4) 2!}+\frac{x^{3}}{(8) 3!}+\cdots+\frac{x^{n}}{2^{n} n!}
\end{aligned}
\end{aligned}
$$

b) Use the result from part (a) to write the first three nonzero terms and the general term of the series expansion about $x=0$ for $g(x)=\frac{e^{\frac{x}{2}}-1}{x}$.

$$
\begin{gathered}
e^{\frac{x}{2}}=\quad 1+\frac{x}{2}+\frac{x^{2}}{(4) 2!}+\frac{x^{3}}{(8) 3!}+\cdots+\frac{x^{n}}{2^{n} n!} \\
g(x)=\frac{e^{\frac{x}{2}}-1}{x}=\frac{\left(1+\frac{x}{2}+\frac{x^{2}}{(4) 2!}+\frac{x^{3}}{(8) 3!}+\cdots+\frac{x^{n}}{2^{n} n!}\right)-1}{x} \\
g(x)=\left(\frac{x}{2 x}+\frac{x^{2}}{(4) 2!x}+\frac{x^{3}}{(8) 3!x}+\cdots+\frac{x^{n}}{2^{n} n!x}\right) \\
g(x)=\left(\frac{1}{2}+\frac{x}{(4) 2!}+\frac{x^{2}}{(8) 3!}+\cdots+\frac{x^{n-1}}{2^{n} n!}\right)
\end{gathered}
$$

c) For the function g in part (b), find $g^{\prime}(2)$ and use it to show that

$$
\sum_{n=1}^{\infty} \frac{n}{4(n+1)!}=\frac{1}{4}
$$

$$
\begin{aligned}
& g(x)=\frac{e^{\frac{x}{2}}-1}{x} \\
& g^{\prime}(x)=\frac{x\left(\frac{1}{2} e^{\frac{x}{2}}\right)-1\left(e^{\frac{x}{2}}-1\right)}{x^{2}} \\
& g^{\prime}(2)=\frac{2\left(\frac{1}{2} e^{\frac{2}{2}}\right)-1\left(e^{\frac{2}{2}}-1\right)}{2^{2}}=\frac{e-e+1}{4}=\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& g(x)=\left(\frac{1}{2}+\frac{x}{(4) 2!}+\frac{x^{2}}{(8) 3!}+\cdots+\frac{x^{n-1}}{2^{n} n!}\right) \\
& g^{\prime}(x)=\left(\frac{1}{(4) 2!}+\frac{2 x}{(8) 3!}+\cdots+\frac{(n-1) x^{n-2}}{2^{n} n!}\right) \\
& g^{\prime}(2)=\left(\frac{1}{(4) 2!}+\frac{2(2)}{(8) 3!}+\cdots+\frac{(n-1) 2^{n-2}}{2^{n} n!}\right) \\
& g^{\prime}(2)=\frac{1}{8}+\frac{1}{12}+\cdots+\frac{n-1}{4 n!}=\sum_{n=1}^{\infty} \frac{n}{4(n+1)!}
\end{aligned}
$$

SO..........

$$
g^{\prime}(2)=\sum_{n=1}^{\infty} \frac{n}{4(n+1)!}=\frac{1}{4}
$$

10)

$$
1994
$$

Let f be the function given by $f(x)=e^{-2 x^{2}}$.
a) Find the first four nonzero terms and the general term of the power series for $f(x)$ about $x=0$.

$$
\begin{aligned}
& \text { Since } e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!} \\
& \qquad \begin{aligned}
& e^{-2 x^{2}}=1+\left(-2 x^{2}\right)+\frac{\left(-2 x^{2}\right)^{2}}{2!}+\frac{\left(-2 x^{2}\right)^{3}}{3!}+\cdots+\frac{\left(-2 x^{2}\right)^{n}}{n!} \\
& e^{-2 x^{2}}=1-2 x^{2}+2 x^{4}-\frac{4 x^{6}}{3}+\cdots+\frac{\left(-2 x^{2}\right)^{n}}{n!}
\end{aligned}
\end{aligned}
$$

11) 2002

The Maclaurin series for the function f is given by

$$
f(x)=\sum_{n=0}^{\infty} \frac{(2 x)^{n+1}}{n+1}=2 x+\frac{4 x^{2}}{2}+\frac{8 x^{3}}{3}+\frac{16 x^{4}}{4}+\cdots+\frac{(2 x)^{n+1}}{n+1}+\cdots
$$

b) Find the first four terms and the general term for the Maclaurin series for $f^{\prime}(x)$.

$$
f^{\prime}(x)=2+4 x+8 x^{2}+16 x^{3}+\cdots+2(2 x)^{n}+\cdots
$$

c) Use the Macluarin series you found in part (b) to find the value of $f^{\prime}\left(-\frac{1}{3}\right)$.

Geometric Method

$$
f^{\prime}(x)=\frac{2}{1-2 x} \quad f^{\prime}\left(-\frac{1}{3}\right)=\frac{2}{\left(1-2\left(-\frac{1}{3}\right)\right.}=\frac{2}{1+\frac{2}{3}}=\frac{6}{5}
$$

Taylor Series

$$
\begin{aligned}
f^{\prime}(x) & =2+4\left(-\frac{1}{3}\right)+8\left(-\frac{1}{3}\right)^{2}+16\left(-\frac{1}{3}\right)^{3}+\cdots+2\left(2\left(-\frac{1}{3}\right)\right)^{n}+\cdots \\
& =2-\frac{4}{3}+\frac{8}{9}-\frac{16}{27}+\cdots+2\left(-\frac{2}{3}\right)^{n}+\cdots \\
& =\frac{2}{1+\frac{2}{3}}=\frac{6}{5}
\end{aligned}
$$

12) 2003

The function f is defined by the power series

$$
f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1)!}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!}+\cdots
$$

a) Find $f^{\prime}(0)$ and $f^{\prime \prime}(0)$. Determine whether f has a local maximum, a local minimum, or neither at $x=0$. Give a reason for your answer.
$f^{\prime}(0)$ is the coefficient of the x term $=0$
$f^{\prime \prime}(0)=2$ (the coefficient of the x^{2} term) $=2\left(-\frac{1}{3!}\right)=-\frac{1}{3}$
f has a local maximum at $x=0$ because $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)<0$
b) Show that $y=f(x)$ is a solution to the differential equation $x y^{\prime}+y=\cos x$.

$$
\begin{aligned}
& y=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!} \\
& y^{\prime}=-\frac{2 x}{3!}+\frac{4 x^{3}}{5!}-\frac{6 x^{5}}{7!}+\cdots+\frac{(2 n)(-1)^{n} x^{2 n-1}}{(2 n+1)!} \\
& x y^{\prime}=-\frac{2 x^{2}}{3!}+\frac{4 x^{4}}{5!}-\frac{6 x^{6}}{7!}+\cdots+\frac{(2 n)(-1)^{n} x^{2 n}}{(2 n+1)!} \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+\frac{(-1)^{n} x^{2 n}}{2 n!}
\end{aligned}
$$

$$
1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!}+-\frac{2 x^{2}}{3!}+\frac{4 x^{4}}{5!}-\frac{6 x^{6}}{7!}+\cdots+\frac{(2 n)(-1)^{n} x^{2 n}}{(2 n+1)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+\frac{(-1)^{n} x^{2 n}}{2 n!}
$$

13)

2005
Let f be a function with derivatives of all orders and for which $f(2)=7$. When n is odd, the nth derivative of f at $x=2$ is given by $f^{(n)}(2)=\frac{(n-1)!}{3^{n}}$.
a) Write the sixth-degree Taylor polynomial for f about $x=2$.
b) In the Taylor series for f about $x=2$, what is the coefficient of $(x-2)^{2 n}$ for $n \geq 1$?

