1) 2002

The Maclaurin series for the function f is given by

$$
f(x)=\sum_{n=0}^{\infty} \frac{(2 x)^{n+1}}{n+1}=2 x+\frac{4 x^{2}}{2}+\frac{8 x^{3}}{3}+\frac{16 x^{4}}{4}+\cdots+\frac{(2 x)^{n+1}}{n+1}+\cdots
$$

a) Find the first four terms and the general term for the Maclaurin series for $f^{\prime}(x)$.

$$
f^{\prime}(x)=2+4 x+8 x^{2}+16 x^{3}+\cdots+(2 x)^{n}
$$

b) Use the Maclaurin series you found in part (b) to find the value of $f^{\prime}\left(-\frac{1}{3}\right)$.

Go Geo. $a_{1}=2 \quad r=2 x \quad f^{\prime}\left(-\frac{1}{3}\right)=\frac{2}{1-2\left(-\frac{1}{3}\right)}=\frac{2}{1+\frac{2}{3}}=\frac{2}{\frac{5}{3}}=\frac{6}{5}$
2) 2003

The function f is defined by the power series

$$
f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1)!}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!}+\cdots
$$

a) Find $f^{\prime}(0)$ and $f^{\prime \prime}(0)$. Determine whether f has a local maximum, a local minimum, or neither at $x=0$. Give a reason for your answer.

$$
f^{\prime}(0) x=0 x \quad f^{\prime}(0)=0 \quad \frac{f^{\prime \prime}(0) x^{2}}{2!}=-\frac{x^{2}}{3!} \quad f^{\prime \prime}(0)=-\frac{2!}{3!}=-\frac{1}{3}
$$

If $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)<0$, it is concave down, soc there is a relative maximum at $x=0$.
b) Show that $y=f(x)$ is a solution to the differential equation $x y^{\prime}+y=\cos x$.

$$
\begin{aligned}
& y=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!}+\cdots \\
& y^{\prime}=-\frac{2 x}{3!}+\frac{4 x^{3}}{5!}-\frac{6 x^{5}}{7!}+\cdots+\frac{(-1)^{n}(2 n) x^{2 n-1}}{(2 n+1)!}+\cdots \\
& x y^{\prime}=-\frac{2 x^{2}}{3!}+\frac{4 x^{4}}{5!}-\frac{6 x^{6}}{7!}+\cdots+\frac{(-1)^{n}(2 n) x^{2 n}}{(2 n+1)!}+\cdots \\
& y=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!}+\cdots
\end{aligned}
$$

$$
x y^{\prime}+y=1-\frac{3 x^{2}}{3!}+\frac{5 x^{4}}{5!}-\frac{7 x^{6}}{7!}+\cdots=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}=\cos x
$$

3) 2005

Let f be a function with derivatives of all orders and for which $f(2)=7$. When n is odd, the nth derivative of f at $x=2$ is 0 . When n is even and $n \geq 2$, the $n t h$ derivative of f at $x=2$ is given by $f^{(n)}(2)=\frac{(n-1)!}{3^{n}}$.
a) Write the sixth-degree Taylor polynomial for f about $x=2$.

$$
\begin{gathered}
7+\frac{x^{2}}{3^{2}}+\frac{3!x^{4}}{3^{4} 4!}+\frac{5!x^{6}}{3^{6} 6!} \\
7+\frac{x^{2}}{3^{2}(2)}+\frac{x^{4}}{3^{4}(4)}+\frac{x^{6}}{3^{6}(6)}
\end{gathered}
$$

b) In the Taylor series for f about $x=2$, what is the coefficient of $(x-2)^{2 n}$ for $n \geq 1$?

$$
\frac{(2 n-1)!}{3^{2 n}(n!)}
$$

4) 2006

The function f is defined by the power series $f(x)=-\frac{x}{2}+\frac{2 x^{2}}{3}-\frac{3 x^{3}}{4}+\cdots+\frac{(-1)^{n} n x^{n}}{n+1}+\cdots$
for all real numbers x for which the series converges.
The function g is defined by the power series

$$
g(x)=1-\frac{x}{2!}+\frac{x^{2}}{4!}-\frac{x^{3}}{6!}+\cdots+\frac{(-1)^{n} x^{n}}{(2 n!)}
$$

a) The graph of $y=f(x)-g(x)$ passes through $(0,-1)$. Find $y^{\prime}(0)$ and $y^{\prime \prime}(0)$.

Determine whether y has a relative minimuim, a relative maximum, or neither at $x=0$. Give a reason for your answer.

$$
\begin{aligned}
f(x) & -g(x)=-1-\frac{x}{2}+\frac{x}{2}+\frac{2 x^{2}}{3}-\frac{x^{2}}{4!}+\cdots \\
& =-1+\frac{16 x^{2}}{24}-\frac{x^{2}}{24}+\cdots=-1+\frac{15 x^{2}}{24}=-1+\frac{5 x^{2}}{8}
\end{aligned}
$$

Since $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)>0$, there is a local minimum as the function is concave up.

Let f be the function given by $f(x)=e^{-x^{2}}$.
a) Write the first four nonzero terms and the general term of the Taylor series for f about $x=0$.

$$
\begin{gathered}
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!} \\
e^{-x^{2}}=1+\left(-x^{2}\right)+\frac{\left(-x^{2}\right)^{2}}{2}+\frac{\left(-x^{2}\right)^{3}}{3!}+\cdots+\frac{(-1)^{n+1}(x)^{2 n}}{n!} \\
e^{-x^{2}}=1-x^{2}+\frac{x^{4}}{2}-\frac{x^{6}}{3!}+\cdots+\frac{(-1)^{n+1}(x)^{2 n}}{n!}
\end{gathered}
$$

b) Use your answer in (a) to find $\lim _{x \rightarrow 0} \frac{1-x^{2}-f(x)}{x^{4}}$.

$$
\begin{gathered}
\frac{1-x^{2}-\left(1-x^{2}+\frac{x^{4}}{2}-\frac{x^{6}}{3!}+\cdots+\frac{(-1)^{n+1}\left(x^{2 n}\right)}{n!}\right.}{x^{4}} \\
\lim _{x \rightarrow 0} \frac{1}{2}-\frac{x^{2}}{3!}+\cdots+\frac{(-1)^{n+1}(x)^{2 n-4}}{n!}=\frac{1}{2}
\end{gathered}
$$

c) Write the first four nonzero terms of the Taylor series for $\int_{0}^{x} e^{-t^{2}} d t$ about $x=0$. Use the first two terms of your answer to estimate $\int_{0}^{\frac{1}{2}} e^{-t^{2}} d t$.

$$
\begin{aligned}
& \int_{0}^{x} e^{-t^{2}} d t=x-\frac{x^{3}}{3}+\frac{x^{5}}{10}+\frac{x^{7}}{42} \\
& \frac{1}{2}-\frac{\left(\frac{1}{2}\right)^{3}}{3}=\frac{1}{2}-\frac{1}{24}=\frac{11}{24}
\end{aligned}
$$

5) 2008

x	$h(x)$	$h^{\prime}(x)$	$h^{\prime \prime}(x)$	$h^{\prime \prime \prime}(x)$	$h^{(4)}(x)$
1	11	30	42	99	18
2	80	128	$\frac{488}{3}$	$\frac{448}{3}$	$\frac{584}{9}$
3	317	$\frac{753}{2}$	$\frac{1383}{4}$	$\frac{3483}{16}$	$\frac{1125}{16}$

Let h be a function having the derivatives of all orders for $x>0$. Selected values of h and its first four derivatives are indicated in the table above. The function h and these derivatives are increasing on the interval $1 \leq x \leq 3$.
a) Write the first degree Taylor polynomial for h about $x=2$ and use it to approximate $h(1.9)$. Is this approximation greater than or less than $h(1.9)$? Explain.

$$
\begin{gathered}
h(x)=80+128(x-2) \\
h(1.9)=80+128(1.9-2)=80+128(-.1)=80-12.8=67.2
\end{gathered}
$$

Since $h^{\prime \prime}(0)>0, h$ is concave up, so the approximation is lower than the actual value.
b) Write the third degree Taylor polynomial for h about $x=2$ and use it to approximate $h(1.9)$.
$h(1.9)=80+128(1.9-2)+\frac{488(1.9-2)^{2}}{3(2!)}+\frac{448(1.9-2)^{3}}{3(3!)}=67.988$
6) 2009

The Maclaurin series for $e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots+\frac{x^{n}}{n!}+\cdots$. The continuous function f is defined by $f(x)=\frac{e^{(x-1)^{2}}-1}{(x-1)^{2}}$ for $x \neq 1$ and $f(1)=1$. The function f has derivatives of all orders at $x=1$.
a) Write the first four nonzero terms and the general term of the Taylor series for $e^{(x-1)^{2}}$ about $x=1$.

$$
\begin{gathered}
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!} \\
e^{(x-1)^{2}}=1+(x-1)^{2}+\frac{\left((x-1)^{2}\right)^{2}}{2}+\frac{\left((x-1)^{2}\right)^{3}}{3!}+\cdots+\frac{\left((x-1)^{2}\right)^{n}}{n!} \\
e^{(x-1)^{2}}=1+(x-1)^{2}+\frac{(x-1)^{4}}{2}+\frac{(x-1)^{6}}{3!}+\cdots+\frac{\left((x-1)^{2}\right)^{n}}{n!}
\end{gathered}
$$

b) Use the Taylor series found in part (a) to write the first four nonzero terms and the general term of the Taylor series for f about $x=1$.

$$
\begin{aligned}
f(x)=\frac{e^{(x-1)^{2}}-1}{(x-1)^{2}} & =\frac{1+(x-1)^{2}+\frac{(x-1)^{4}}{2}+\frac{(x-1)^{6}}{3!}+\cdots+\frac{\left((x-1)^{2}\right)^{n}}{n!}-1}{(x-1)^{2}} \\
f(x) & =1+\frac{(x-1)^{2}}{2}+\frac{(x-1)^{4}}{3!}+\cdots+\frac{\left((x-1)^{2 n-2}\right.}{n!}
\end{aligned}
$$

c) Use the Taylor series for f about $x=1$ to determine whether the graph of f has any points of inflection.

Since $f^{\prime \prime}(x)$ is always a positive number for all values of x, the concavity is always positive, so it never changes and there are no points of inflection.
7) 2010

$$
f(x)= \begin{cases}\frac{\cos x-1}{x^{2}} & \text { for } x \neq 0 \\ -\frac{1}{2} & \text { for } x=0\end{cases}
$$

The function f, defined above, has derivatives of all orders. Let g be the function defined by $(x)=1+\int_{0}^{x} f(t) d t$.
a) Write the first three nonzero terms and the general term of the Taylor series for $\cos x$ about $x=0$. Use this series to write the first three nonzero terms of the Taylor series for f about $x=0$.

$$
\begin{aligned}
& \cos x=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}+\cdots+\frac{(-1)^{n+1} x^{2 n}}{2 n!} \\
& \cos x-1=-\frac{x^{2}}{2}+\frac{x^{4}}{4!}+\cdots+\frac{(-1)^{n+1} x^{2 n}}{2 n!} \\
& \frac{\cos x-1}{x^{2}}=\frac{-\frac{x^{2}}{2}+\frac{x^{4}}{4!}+\cdots+\frac{(-1)^{n+1} x^{2 n}}{2 n!}}{x^{2}}=-\frac{1}{2}+\frac{x^{2}}{4!}-\frac{x^{4}}{6!}
\end{aligned}
$$

b) Use the Taylor series for f about $x=0$ found in part (a) to determine whether f has a relative maximum, relative minimum, or neither at $x=0$. Give a reason for your answer.

Since $f^{\prime}(0)=0 \& f^{\prime \prime}(0)=\frac{1}{12}, f$ is concave up so it is a local minimum.
c) Write the fifth-degree Taylor polynomial for g about $x=0$.
8) 2011

Let $f(x)=\sin \left(x^{2}\right)+\cos x$.
a) Write the first four nonzero terms of the Taylor series for $\sin x$ about $x=0$, and write the first four nonzero terms of the Taylor series for $\sin \left(x^{2}\right)$ about $x=0$.

$$
\begin{gathered}
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+\frac{(-1)^{n+1} x^{2 n+1}}{(2 n+1)!} \\
\sin x^{2}=x^{2}-\frac{\left(x^{2}\right)^{3}}{3!}+\frac{\left(x^{2}\right)^{5}}{5!}-\frac{\left(x^{2}\right)^{7}}{7!}+\cdots+\frac{(-1)^{n+1} x^{4 n+2}}{(2 n+1)!} \\
x^{2}-\frac{\left(x^{2}\right)^{3}}{3!}+\frac{\left(x^{2}\right)^{5}}{5!}-\frac{\left(x^{2}\right)^{7}}{7!}+\cdots+\frac{(-1)^{n+1} x^{4 n+2}}{(2 n+1)!}
\end{gathered}
$$

b) Write the first four nonzero terms of the Taylor series for $\cos x$ about $x=0$. Use this series and the series for $\sin \left(x^{2}\right)$, found in part (a), to write the first four nonzero terms of the Taylor series for f about $x=0$.

$$
\begin{gathered}
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+\frac{(-1)^{n+1} x^{2 n}}{(2 n)!} \\
\sin x^{2}+\cos x=1+x^{2}-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{3!}-\frac{x^{6}}{6!}=1+\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{121 x^{6}}{6!}
\end{gathered}
$$

c) Find the value of $f^{(6)}(0)$.

$$
\frac{f^{(6)}(0) x^{6}}{6!}=-\frac{121 x^{6}}{6!} \quad f^{(6)}(0)=-121
$$

9) 2012

The function g has derivatives of all orders, and the Maclaurin series for g is
$\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+3}=\frac{x}{3}-\frac{x^{3}}{5}+\frac{x^{5}}{7}+\cdots$
a) Write the first three nonzero terms and the general terms of the Maclaurin series for $g^{\prime}(x)$.

$$
g^{\prime}(x)=\frac{1}{3}-\frac{3 x^{2}}{5}+\frac{5 x^{4}}{7}+\cdots+\frac{(-1)^{n}(2 n+1) x^{2 n}}{(2 n+3)}
$$

