Series on the BC MC Test

1) The Maclaurin series for $\frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^{n}$. What is a power series expansion for $\frac{x^{2}}{1-x^{2}}$?

$$
x^{2}\left(1+x^{2}+x^{4}+\cdots+x^{2 n}+\cdots\right)
$$

2) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!}$ is the Taylor series about zero for which function?

$$
y=e^{-x}
$$

3) A series expansion of $\frac{\operatorname{sint}}{t}$ is

$$
\begin{gathered}
\sin t=t-\frac{t^{3}}{3!}-\frac{t^{5}}{5!}+\cdots+\frac{(-1)^{n+1} t^{2 n+1}}{(2 n+1)!} \\
\frac{\sin t}{t}=\frac{t}{t}-\frac{t^{3}}{3!t}-\frac{t^{5}}{5!t}+\cdots+\frac{(-1)^{n+1} t^{2 n+1}}{(2 n+1)!t} \\
\frac{\sin t}{t}=1-\frac{t^{2}}{3!}-\frac{t^{4}}{5!}+\cdots+\frac{(-1)^{n+1} t^{2 n}}{(2 n+1)!}
\end{gathered}
$$

4) For $-1<x<1$ if $f(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2 n-1}}{2 n-1}$, then $f^{\prime}(x)=$

$$
\frac{(2 n-1)(-1)^{n+1} x^{2 n-2}}{2 n-1}=\sum_{n=2}^{\infty}(-1)^{n+1} x^{2 n-2}
$$

5) The coefficient of x^{3} in the Taylor series for $e^{3 x}$ about $x=0$ is

$$
\begin{gathered}
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!} \\
e^{3 x}=1+3 x+\frac{(3 x)^{2}}{2}+\frac{(3 x)^{3}}{3!}+\cdots+\frac{(3 x)^{n}}{n!} \\
e^{3 x}=1+3 x+\frac{9 x^{2}}{2}+\frac{27 x^{3}}{3!}+\cdots+\frac{(3 x)^{n}}{n!} \\
\frac{27}{3!}=\frac{9}{2}
\end{gathered}
$$

6) The Taylor series for $\sin (2 x)$ is

$$
\begin{aligned}
& \sin x=x-\frac{x^{3}}{3!}-\frac{x^{5}}{5!}+\cdots+\frac{(-1)^{n+1} x^{2 n+1}}{(2 n+1)!} \\
& \sin 2 x=2 x-\frac{(2 x)^{3}}{3!}-\frac{(2 x)^{5}}{5!}+\cdots+\frac{(-1)^{n+1}(2 x)^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

7) The coefficient of x^{6} in the Taylor's series expansion about $x=0$ for $f(x)=\sin \left(x^{2}\right)$ is

$$
\begin{gathered}
\sin x=x-\frac{x^{3}}{3!}-\frac{x^{5}}{5!}+\cdots+\frac{(-1)^{n+1} x^{2 n+1}}{(2 n+1)!} \\
\sin x^{2}=x^{2}-\frac{\left(x^{2}\right)^{3}}{3!}-\frac{\left(x^{2}\right)^{5}}{5!}+\cdots+\frac{(-1)^{n+1}\left(x^{2}\right)^{2 n+1}}{(2 n+1)!} \\
-\frac{\left(x^{2}\right)^{3}}{3!}=-\frac{x^{6}}{6}=-\frac{1}{6}
\end{gathered}
$$

8) (C) If $f(x)=\sum_{k=1}^{\infty}\left(\sin ^{2} x\right)^{k}$, then $f(1)$ is

Go Geo. $\quad a_{1}=\sin ^{2}(1)=.708 \quad r=.708 \quad \frac{a_{1}}{1-r}=\frac{.708}{1-.708}=2.425$
9) The sum of the infinite geometric series $\frac{3}{2}+\frac{9}{16}+\frac{27}{128}+\frac{81}{1024}+\cdots$

Go Geo. $a_{1}=\frac{3}{2} \quad r=\frac{3}{8} \quad \frac{a_{1}}{1-r}=\frac{\frac{3}{2}}{1-\frac{3}{8}}=\frac{\frac{3}{2}}{\frac{5}{8}}=\frac{3}{2} \cdot \frac{8}{5}=\frac{12}{5}$
10) Let f be the function given by $f(x)=\ln (3-x)$. The third degree Taylor polynomial for f about $x=2$ is

$$
\begin{array}{cc}
\mathrm{f}(\mathrm{x})=\ln (3-x) & f(2)=\ln 1=0 \\
f^{\prime}(x)=\frac{-1}{3-x}=-(3-x)^{-1} & f^{\prime}(2)=\frac{-1}{1}=-1 \\
f^{\prime \prime}(x)=-(3-x)^{-2} & f^{\prime \prime}(2)=-\frac{1}{1}=-1 \\
f^{\prime \prime \prime}(x)=-2(3-x)^{-3} & f^{\prime \prime \prime}(2)=-2 \\
f(2)+f^{\prime}(2)(x-2)+f^{\prime \prime}(2) \frac{(x-2)^{2}}{2!}+f^{\prime \prime \prime}(2) \frac{(x-2)^{3}}{3!} \\
-(x-2)-\frac{(x-2)^{2}}{2!}-\frac{2(x-2)^{3}}{3!}
\end{array}
$$

11) The Taylor series for $\sin x$ about $x=0$ is $x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots$. If f is a function such that $f^{\prime}(x)=\sin \left(x^{2}\right)$, then the coefficient of x^{7} in the Taylor series for $f(x)$ about $x=0$ is

$$
\begin{gathered}
\sin x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots \\
f^{\prime}(x)=\sin x^{2}=x^{2}-\frac{\left(x^{2}\right)^{3}}{3}+\frac{\left(x^{2}\right)^{5}}{5}-\cdots \\
f(x)=\frac{x^{3}}{3}-\frac{x^{7}}{3(7)}+\frac{x^{11}}{11(5)}
\end{gathered}
$$

The coefficient is $-\frac{1}{21}$.
12) What is the approximation of the value of $\sin 1$ obtained by using the fifth-degree Taylor polynomial about $x=0$ for $\sin x$?

$$
\begin{gathered}
\sin x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots \\
\sin 1=1-\frac{1^{3}}{3}+\frac{1^{5}}{5}=1-\frac{1}{3}+\frac{1}{5}=\frac{15}{15}-\frac{5}{15}+\frac{3}{15}=\frac{13}{15}
\end{gathered}
$$

13) If $\sum_{n=0}^{\infty} a_{n} x^{n}$ is a Taylor series that converges to $f(x)$ for all real x, then $f^{\prime}(1)=$

$$
f^{\prime}(x)=a_{n} n x^{n-1} \quad f^{\prime}(1)=a_{n} n
$$

14) (C) The graph of the function represented by the Maclaurin series

$$
\begin{gathered}
1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots+\frac{(-1)^{n} x^{n}}{n!}+\cdots \text { intersects the graph of } y=x^{3} \text { at } x= \\
1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots+\frac{(-1)^{n} x^{n}}{n!}+\cdots=e^{-x}
\end{gathered}
$$

Put $y=x^{3} \& y=e^{-x}$ and see they intersect at $=.773$.
15) What is the value of $\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^{n}}$?

$$
\begin{aligned}
& \text { Go Geo. } \quad \sum_{n=1}^{\infty} \frac{2^{n+1}}{3^{n}}=\sum_{n=1}^{\infty} \frac{2\left(2^{n}\right)}{3^{n}}=\sum_{n=1}^{\infty} 2\left(\frac{2}{3}\right)^{n} \\
& a_{1}=\frac{4}{3} \quad r=\frac{2}{3} \quad \frac{\frac{4}{3}}{1-\frac{2}{3}}=\frac{\frac{4}{3}}{\frac{1}{3}}=4
\end{aligned}
$$

16) A function f has Maclaurin series given by $\frac{x^{4}}{2!}+\frac{x^{5}}{3!}+\frac{x^{6}}{4!}+\cdots+\frac{x^{n+3}}{(n+1)!}+\ldots$

Which of the following is an expression for (x) ? D
a) $-3 x \sin x+3 x^{2}$
b) $-\cos \left(x^{2}\right)+1$
c) $-x^{2} \cos x+x^{2}$
d) $x^{2} e^{x}-x^{3}-x^{2}$
e) $e^{x^{2}}-x^{2}-1$

$$
\begin{gathered}
x^{2} e^{x}-x^{3}-x^{2}=x^{2}\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right)-x^{3}-x^{2} \\
x^{2}+x^{3}+\frac{x^{4}}{2!}+\frac{x^{5}}{3!}+\cdots-x^{3}-x^{2} \\
=\frac{x^{4}}{2!}+\frac{x^{5}}{3!}+\cdots
\end{gathered}
$$

17) What is the coefficient of x^{2} in the Taylor series for $\frac{1}{1+x^{2}}$ about $x=0$?

Go Geo. $\quad r=-x^{2}$

$$
\frac{1}{1+x^{2}}=1-x^{2}+\frac{\left(-x^{2}\right)^{2}}{2!}+. .
$$

The coefficient is -1 .
18) Let $P(x)=3 x^{2}-5 x^{3}+7 x^{4}+3 x^{5}$ be the fifth-degree Taylor polynomial for the function f about $x=0$. What is the value of $f^{\prime \prime \prime}(0)$?

$$
\begin{gathered}
P(x)=3 x^{2}-5 x^{3}+7 x^{4}+3 x^{5} \\
P(x)=f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2!}+f^{\prime \prime \prime}(0) \frac{x^{3}}{3!}+f^{\prime \prime \prime \prime}(0) \frac{x^{4}}{4!}+f^{\prime \prime \prime \prime \prime}(0) \frac{x^{5}}{5!} \\
f^{\prime \prime \prime}(0) \frac{x^{3}}{3!}=-5 x^{3} \\
\frac{f^{\prime \prime \prime}(0)}{3!}=-5 \\
f^{\prime \prime \prime}(0)=-5(3!)=-30
\end{gathered}
$$

19) What is the sum of the series $1+\ln 2+\frac{(\ln 2)^{2}}{2!}+\cdots+\frac{(\ln 2)^{n}}{n!}+\cdots$

This is $e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}$ Where the $x=\ln 2$.

$$
e^{\ln 2}=2
$$

20) If $f(x)=x \sin (2 x)$, what is the Taylor series for f about $x=0$?

$$
\begin{aligned}
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
& \sin 2 x=2 x-\frac{(2 x)^{3}}{3!}+\frac{(2 x)^{5}}{5!}-\frac{(2 x)^{7}}{7!}+\cdots=2 x-\frac{8 x^{3}}{3!}+\frac{32 x^{5}}{5!}-\frac{128 x^{7}}{7!} \\
& x \sin 2 x=2 x^{2}-\frac{8 x^{4}}{3!}+\frac{32 x^{6}}{5!}-\frac{128 x^{8}}{7!}
\end{aligned}
$$

