Series on the BC MC Test

- 1) The Maclaurin series for $\frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^n$. What is a power series expansion for $\frac{x^2}{1-x^2}$? $x^2(1+x^2+x^4+\cdots+x^{2n}+\cdots)$
- 2) $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!}$ is the Taylor series about zero for which function? $y = e^{-x}$
- 3) A series expansion of $\frac{sint}{t}$ is $sint = t - \frac{t^3}{3!} - \frac{t^5}{5!} + \dots + \frac{(-1)^{n+1}t^{2n+1}}{(2n+1)!}$ $\frac{sint}{t} = \frac{t}{t} - \frac{t^3}{3!t} - \frac{t^5}{5!t} + \dots + \frac{(-1)^{n+1}t^{2n+1}}{(2n+1)!t}$ $\frac{sint}{t} = 1 - \frac{t^2}{3!} - \frac{t^4}{5!} + \dots + \frac{(-1)^{n+1}t^{2n}}{(2n+1)!}$

4) For
$$-1 < x < 1$$
 if $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n-1}}{2n-1}$, then $f'(x) = \frac{(2n-1)(-1)^{n+1} x^{2n-2}}{2n-1} = \sum_{n=2}^{\infty} (-1)^{n+1} x^{2n-2}$

5) The coefficient of x^3 in the Taylor series for e^{3x} about x = 0 is

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!}$$

$$e^{3x} = 1 + 3x + \frac{(3x)^{2}}{2} + \frac{(3x)^{3}}{3!} + \dots + \frac{(3x)^{n}}{n!}$$

$$e^{3x} = 1 + 3x + \frac{9x^{2}}{2} + \frac{27x^{3}}{3!} + \dots + \frac{(3x)^{n}}{n!}$$

$$\frac{27}{3!} = \frac{9}{2}$$

6) The Taylor series for sin(2x) is

$$sinx = x - \frac{x^3}{3!} - \frac{x^5}{5!} + \dots + \frac{(-1)^{n+1}x^{2n+1}}{(2n+1)!}$$

$$sin2x = 2x - \frac{(2x)^3}{3!} - \frac{(2x)^5}{5!} + \dots + \frac{(-1)^{n+1}(2x)^{2n+1}}{(2n+1)!}$$

7) The coefficient of x^6 in the Taylor's series expansion about x = 0 for $f(x) = \sin(x^2)$ is

$$sinx = x - \frac{x^3}{3!} - \frac{x^5}{5!} + \dots + \frac{(-1)^{n+1}x^{2n+1}}{(2n+1)!}$$
$$sinx^2 = x^2 - \frac{(x^2)^3}{3!} - \frac{(x^2)^5}{5!} + \dots + \frac{(-1)^{n+1}(x^2)^{2n+1}}{(2n+1)!}$$
$$- \frac{(x^2)^3}{3!} = -\frac{x^6}{6} = -\frac{1}{6}$$

8) (C) If $f(x) = \sum_{k=1}^{\infty} (\sin^2 x)^k$, then f(1) is

Go Geo.
$$a_1 = sin^2(1) = .708$$
 $r = .708$ $\frac{a_1}{1-r} = \frac{.708}{1-.708} = 2.425$

- 9) The sum of the infinite geometric series $\frac{3}{2} + \frac{9}{16} + \frac{27}{128} + \frac{81}{1024} + \cdots$ Go Geo. $a_1 = \frac{3}{2}$ $r = \frac{3}{8}$ $\frac{a_1}{1-r} = \frac{\frac{3}{2}}{1-\frac{3}{8}} = \frac{\frac{3}{2}}{\frac{5}{8}} = \frac{3}{2} \cdot \frac{8}{5} = \frac{12}{5}$
- 10) Let f be the function given by $f(x) = \ln(3 x)$. The third degree Taylor polynomial for f about x = 2 is

$$f(x) = \ln(3 - x) \qquad f(2) = \ln 1 = 0$$

$$f'(x) = \frac{-1}{3 - x} = -(3 - x)^{-1} \qquad f'(2) = \frac{-1}{1} = -1$$

$$f''(x) = -(3 - x)^{-2} \qquad f''(2) = -\frac{1}{1} = -1$$

$$f'''(x) = -2(3 - x)^{-3} \qquad f'''(2) = -2$$

$$f(2) + f'(2)(x - 2) + f''(2)\frac{(x - 2)^2}{2!} + f'''(2)\frac{(x - 2)^3}{3!}$$

$$-(x - 2) - \frac{(x - 2)^2}{2!} - \frac{2(x - 2)^3}{3!}$$

11) The Taylor series for *sinx* about x = 0 is $x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots$. If f is a function such that $f'(x) = \sin(x^2)$, then the coefficient of x^7 in the Taylor series for f(x) about x = 0 is

$$sinx = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots$$
$$f'(x) = sinx^2 = x^2 - \frac{(x^2)^3}{3} + \frac{(x^2)^5}{5} - \cdots$$
$$f(x) = \frac{x^3}{3} - \frac{x^7}{3(7)} + \frac{x^{11}}{11(5)}$$
The coefficient is $-\frac{1}{21}$.

12) What is the approximation of the value of sin 1 obtained by using the fifth-degree Taylor polynomial about x = 0 for sinx?

$$sinx = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots$$
$$sin1 = 1 - \frac{1^3}{3} + \frac{1^5}{5} = 1 - \frac{1}{3} + \frac{1}{5} = \frac{15}{15} - \frac{5}{15} + \frac{3}{15} = \frac{13}{15}$$

13) If $\sum_{n=0}^{\infty} a_n x^n$ is a Taylor series that converges to f(x) for all real x, then f'(1) =

$$f'(x) = a_n n x^{n-1}$$
 $f'(1) = a_n n$

14) (C) The graph of the function represented by the Maclaurin series

$$1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + \frac{(-1)^n x^n}{n!} + \dots \text{ intersects the graph of } y = x^3 \text{ at } x = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + \frac{(-1)^n x^n}{n!} + \dots = e^{-x}$$

Put $y = x^3 \& y = e^{-x}$ and see they intersect at = .773.

15) What is the value of $\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n}$?

Go Geo.
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n} = \sum_{n=1}^{\infty} \frac{2(2^n)}{3^n} = \sum_{n=1}^{\infty} 2(\frac{2}{3})^n$$

 $a_1 = \frac{4}{3} \quad r = \frac{2}{3} \quad \frac{\frac{4}{3}}{1 - \frac{2}{3}} = \frac{\frac{4}{3}}{\frac{1}{3}} = 4$

16) A function f has Maclaurin series given by $\frac{x^4}{2!} + \frac{x^5}{3!} + \frac{x^6}{4!} + \dots + \frac{x^{n+3}}{(n+1)!} + \dots$

Which of the following is an expression for (x)? D

a) $-3xsinx + 3x^{2}$ b) $-\cos(x^{2}) + 1$ c) $-x^{2}cosx + x^{2}$ d) $x^{2}e^{x} - x^{3} - x^{2}$ e) $e^{x^{2}} - x^{2} - 1$

$$x^{2}e^{x} - x^{3} - x^{2} = x^{2}\left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots\right) - x^{3} - x^{2}$$
$$x^{2} + x^{3} + \frac{x^{4}}{2!} + \frac{x^{5}}{3!} + \cdots - x^{3} - x^{2}$$
$$= \frac{x^{4}}{2!} + \frac{x^{5}}{3!} + \cdots$$

17) What is the coefficient of x^2 in the Taylor series for $\frac{1}{1+x^2}$ about x = 0?

Go Geo. $r = -x^2$

$$\frac{1}{1+x^2} = 1 - x^2 + \frac{(-x^2)^2}{2!} + \dots$$

The coefficient is -1.

18) Let $P(x) = 3x^2 - 5x^3 + 7x^4 + 3x^5$ be the fifth-degree Taylor polynomial for the function *f* about x = 0. What is the value of f'''(0)?

$$P(x) = 3x^{2} - 5x^{3} + 7x^{4} + 3x^{5}$$

$$P(x) = f(0) + f'(0)x + f''(0)\frac{x^{2}}{2!} + f'''(0)\frac{x^{3}}{3!} + f''''(0)\frac{x^{4}}{4!} + f''''(0)\frac{x^{5}}{5!}$$

$$f'''(0)\frac{x^{3}}{3!} = -5x^{3}$$

$$\frac{f'''(0)}{3!} = -5$$

 $f^{\prime\prime\prime}(0) = -5(3!) = -30$

19) What is the sum of the series $1 + ln2 + \frac{(ln2)^2}{2!} + \dots + \frac{(ln2)^n}{n!} + \dots$

This is
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$
 Where the $x = ln2$.
 $e^{ln2} = 2$

20) If $f(x) = x \sin(2x)$, what is the Taylor series for f about x = 0?

 $sinx = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$

$$sin2x = 2x - \frac{(2x)^3}{3!} + \frac{(2x)^5}{5!} - \frac{(2x)^7}{7!} + \dots = 2x - \frac{8x^3}{3!} + \frac{32x^5}{5!} - \frac{128x^7}{7!}$$
$$xsin2x = 2x^2 - \frac{8x^4}{3!} + \frac{32x^6}{5!} - \frac{128x^8}{7!}$$