Calculus 3.5 Trigonometric Functions
Graph $y=\sin x$ using five key points. Draw tangent lines at each of the five points.

Graph the derivative of $y=\sin x$ by finding the derivative at the 5 basic points.

The derivative of $y=\sin x$ is $y^{\prime}=\cos x$

Prove your answer using the definition of the derivative.
$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}=\lim _{h \rightarrow 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h}$
$\lim _{h \rightarrow 0} \frac{\sin x \cos h-\sin x}{h}+\lim _{h \rightarrow 0} \frac{\cos x \sin h}{h}=\sin x \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\cos x \lim _{h \rightarrow 0} \frac{\sin x}{x}$
$\lim _{x} \frac{\cosh -1}{h}=0$ because of this graph.
$\lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0$ because of this graph.

$\lim _{h \rightarrow 0} \frac{\sin x}{x}=1$ because of this graph
$\sin x(0)+\cos x(1)=\cos x$

Graph $y=\cos x$ showing the key five points and draw tangents at each of the 5 points.

Graph the derivative of $y=\cos x$ by finding the derivative at the 4 basic points.

The derivative of $y=\cos x$ is $-\sin x$.
Prove your answer using the definition of the derivative.

$$
\begin{aligned}
& \begin{array}{l}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\cos x \cos h-\sin x \sin h-\cos x}{h} \\
\quad=\lim _{h \rightarrow 0} \frac{\cos x \cos h-\cos x}{h}-\lim _{h \rightarrow 0} \frac{\sin x \sinh h}{h} \\
\lim _{h \rightarrow 0} \frac{\cos x(\cos h-1)}{h}-\lim _{h \rightarrow 0} \frac{\sin x \sinh }{h}= \\
\cos x \lim _{h \rightarrow 0} \frac{(\cos h-1)}{h}-\sin x \lim _{h \rightarrow 0} \frac{\sinh }{h}=
\end{array}
\end{aligned}
$$

$\lim _{h \rightarrow 0} \frac{(\cosh -1)}{h}=0$ because of the graph

$\lim _{h \rightarrow 0} \frac{\sinh }{h}=1$ because of the graph
$\cos x(0)-\sin x(1)=-\sin x$

Find the derivative of $y=\tan x$ by using a trig identity.

$$
y=\frac{\sin x}{\cos x}
$$

Use the quotient rule to find the derivative.

$$
\frac{B D T-T D B}{B^{2}}=\frac{\cos x(\cos x)-\sin x(-\sin x)}{\cos ^{2} x}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x
$$

Find the derivative of $y=\cot x$ by using a trig identity.

$$
y=\frac{\cos x}{\sin x}
$$

Use the quotient rule to find the derivative.

$$
\begin{aligned}
& \frac{B D T-T D B}{B^{2}}=\frac{\sin x(-\sin x)-\cos x(-\cos x)}{\cos ^{2} x}=\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x}= \\
& \frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x}=\frac{-1}{\sin ^{2} x}=-\csc ^{2} x
\end{aligned}
$$

Find the derivative of $y=\sec x$ by using a trig identity.

$$
y=\frac{1}{\cos x}
$$

Use the quotient rule to find the derivative.

$$
\frac{B D T-T D B}{B^{2}}=\frac{\cos x(0)-1(-\sin x)}{\cos ^{2} x}=\frac{\sin x}{\cos ^{2} x}=\frac{\sin x}{\cos x} \cdot \frac{1}{\cos x}=\tan x \sec x=\sec x \tan x
$$

Find the derivative of $y=\csc x$ by using a trig identity.

$$
y=\frac{1}{\sin x}
$$

Use the quotient rule to find the derivative.

$$
\frac{B D T-T D B}{B^{2}}=\frac{\sin x(0)-1(\cos x)}{\sin ^{2} x}=\frac{-\cos x}{\sin ^{2} x}=\frac{-\cos x}{\sin x} \cdot \frac{1}{\sin x}=-\cot x \csc x=-\csc x \cot
$$

Function
$y=\sin x$
$y=\cos x$
$y^{\prime}=-\sin x$
$y=\tan x$
$y^{\prime}=\sec ^{2} x$
$y=\cot x$
$y^{\prime}=-\csc ^{2} x$
$y=\sec x$
$y^{\prime}=\sec x \tan x$
$y=\csc x$
$y^{\prime}=-\csc x \cot x$

All of the cofunctions are negative.

$$
\begin{array}{lll}
y=x^{2} \tan x & \text { Product Rule } & x^{2} \\
& 2 x & \tan x \\
\sec ^{2} x
\end{array}
$$

$y^{\prime}=x^{2} \sec ^{2} x+2 x \tan x$

$$
\begin{array}{lll}
y=\frac{\sin x}{3 x^{2}+2 x} & \sin x & 3 x^{2}+2 x \\
& \cos x & 6 x+2
\end{array}
$$

$y^{\prime}=\frac{B D T-T D B}{B^{2}}=\frac{\left(3 x^{2}+2 x\right) \cos x-(6 x+2) \sin x}{\left(3 x^{2}+2 x\right)^{2}}$
$s(t)=2 \sin t+3 \cos t \quad$ Find the velocity, speed and acceleration at t.
$v(t)=2 \cos t-3 \sin t$
$\operatorname{speed}(t)=|2 \cos t-3 \sin t|$
$a(t)=-2 \sin t-3 \cos t$

Find the position, velocity, speed and acceleration at $t=\frac{\pi}{4}$.
$s(t)=2 \frac{\sqrt{2}}{2}+3 \frac{\sqrt{2}}{2}=\frac{5 \sqrt{2}}{2}$
$v(t)=2 \frac{\sqrt{2}}{2}-3 \frac{\sqrt{2}}{2}=\frac{-\sqrt{2}}{2}$
$\operatorname{speed}(t)=\left|2 \frac{\sqrt{2}}{2}-3 \frac{\sqrt{2}}{2}\right|=\frac{\sqrt{2}}{2}$
$a(t)=-2 \frac{\sqrt{2}}{2}-3 \frac{\sqrt{2}}{2}=-\frac{5 \sqrt{2}}{2}$

Find the tangent and normal line of $y=\sec x$ at $x=\frac{\pi}{3}$.

$$
\begin{aligned}
& x=\frac{\pi}{3} \quad y=\sec \frac{\pi}{3}=2 \quad y^{\prime}=\sec x \tan x=2 \sqrt{3} \\
& y-2=2 \sqrt{3}\left(x-\frac{\pi}{3}\right) \quad \text { tangent line } \\
& y-2=-\frac{1}{2 \sqrt{3}}\left(x-\frac{\pi}{3}\right) \text { normal line }
\end{aligned}
$$

Find the equation of the normal and tangent line at $x=3$ for $y=x^{2} \sin x$.

$$
\begin{aligned}
& y^{\prime}=x^{2} \cos x+2 x \sin x \\
& y^{\prime}=3^{2} \cos 3+2(3) \sin 3=-8.063 \\
& x=3, y=1.27 \\
& y-1.27=-8.063(x-3) \quad \text { Tangent line } \\
& y-1.27=.124(x-3) \quad \text { Normal line }
\end{aligned}
$$

Find the equation for the horizontal tangent over the interval $[0, \pi]$ for $y=2 \sin x$.
The horizontal tangent has a slope of 0 .
Find the derivative and make it $=0$. Solve for x.

$$
\begin{aligned}
& y^{\prime}=2 \cos x \quad 0=2 \cos x \quad 0=\cos x \quad x=\frac{\pi}{2} \\
& y=2 \sin \left(\frac{\pi}{2}\right)=2(1)=2
\end{aligned}
$$

The point is $\left(\frac{\pi}{2}, 2\right)$ and the slope is 0 .

$$
\begin{aligned}
& y-2=0\left(x-\frac{\pi}{2}\right) \\
& y-2=0 \\
& y=2
\end{aligned}
$$

