Calculus 3.3 The Shortcuts

The POWER rule:

$$
\begin{array}{lll}
y=x^{5} & y^{\prime}=5 x^{4} \\
y=3 x^{6} & y^{\prime}=18 x^{5} & \\
y=7 x & y^{\prime}=7 & \\
y=8 & y^{\prime}=0 & y^{\prime}=-2 x^{-3}=-\frac{2}{x^{3}} \\
y=\frac{1}{x^{3}} & \text { Change it to } y=x^{-2} & y^{\prime}=40 x^{-6}=\frac{40}{x^{6}} \\
y=\frac{8}{x^{5}} & \text { Change it to } y=-8 x^{-5} & y^{\prime}=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}} \\
y=\sqrt{x} & \text { Change it to } y=x^{\frac{1}{2}} & y^{\prime}=\frac{1}{3} x^{-\frac{2}{3}}=\frac{1}{3 \sqrt[3]{x^{2}}}
\end{array}
$$

What is the general power rule?

$$
y=a x^{n} \quad y^{\prime}=a n x^{n-1}
$$

Two functions added or subtracted together

$$
\begin{aligned}
& y=x^{5}+7 x^{2}+9 x-10 \quad y^{\prime}=5 x^{4}+14 x+9 \\
& y=\sqrt{x}-\frac{3}{x} \quad \text { Change it to } y=x^{\frac{1}{2}}-3 x^{-1} \quad y^{\prime}=\frac{1}{2} x^{-\frac{1}{2}}+3 x^{-2}=\frac{1}{2 \sqrt{x}}+\frac{3}{x^{2}}
\end{aligned}
$$

What is the general rule for two functions added or subtracted together ?

$$
y=f(x)+g(x) \quad y^{\prime}=f^{\prime}(x)+g^{\prime}(x)
$$

The Product Rule

$$
y=(x+5)(7 x-1) \text { There are two } 2 \text { ways to solve this problem. }
$$

Method 1:
Multiply the functions together and then take the derivative.

$$
y=7 x^{2}+34 x-5 \quad y^{\prime}=14 x+11
$$

Method 2
Use the Product Rule.
Identify the two functions and name them.

$$
f(x)=x+5 \quad g(x)=7 x-1
$$

Take the derivative of each function.

$$
f^{\prime}(x)=1 \quad g^{\prime}(x)=7
$$

Use formula $y^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$

$$
\begin{aligned}
& y^{\prime}=1(7 x-1)+(x+5)(7) \\
& y^{\prime}=7 x-1+7 x+35=14 x+34
\end{aligned}
$$

Practice

$$
y=(7 x-3)(\sqrt{x+8})
$$

$$
\begin{aligned}
& f(x)=7 x-3 \\
& f^{\prime}(x)=7 \\
& g(x)=\sqrt{x+8} \\
& g(x)=(x+8)^{\frac{1}{2}} \\
& g^{\prime}(x)=\frac{1}{2}(x+8)^{-\frac{1}{2}} \\
& g^{\prime}(x)=\frac{1}{2 \sqrt{x+8}}
\end{aligned}
$$

Using the formula $y^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$ is the same thing as cross multiplying (do the arrows) and adding the answers together.

Use formula $y^{\prime}=\frac{(7 x-3)}{2 \sqrt{x+8}}+7 \sqrt{x+8}$
Add these together using the diagonal - diagonal - denominator trick.

$$
y^{\prime}=\frac{(7 x-3)}{2 \sqrt{x+8}}+\frac{7 \sqrt{x+8}}{1}=\frac{7 x-3+14(x+8)}{2 \sqrt{x+8}}=\frac{21 x+109}{2 \sqrt{x+8}}
$$

More Practice

$$
y=\left(6 x^{2}-9 x\right)(\sqrt[3]{x})
$$

$$
f(x)=6 x^{2}-9 x, \begin{aligned}
& g(x)=\sqrt[3]{x} \\
& f^{\prime}(x)=12 x-9 \\
& g^{\prime}(x)=\frac{1}{3} x^{-\frac{2}{3}} \\
& g^{\prime}(x)=\frac{1}{3 \sqrt[3]{x^{2}}}
\end{aligned}
$$

Do the arrows.

$$
y^{\prime}=\frac{6 x^{2}-9 x}{3 \sqrt[3]{x^{2}}}+(12 x-9) \sqrt[3]{x}
$$

Add these together using the diagonal - diagonal - denominator trick.

$$
y^{\prime}=\frac{6 x^{2}-9 x+(36 x-27) x}{3 \sqrt[3]{x^{2}}}=\frac{45 x^{2}-36 x}{3 \sqrt[3]{x^{2}}}=\frac{15 x^{2}-12 x}{\sqrt[3]{x^{2}}}
$$

The Quotient Rule

When you see a function divided by another function, you use the quotient rule.
$y=\frac{4 x+7}{3 x-2} \quad$ Split the fraction into a Top function and a Bottom function.

$$
\begin{array}{ll}
\text { Top }=4 x+7 & \text { Bottom }=3 x-2 \quad \text { Now take the derivative of both of them. } \\
\text { Top }^{\prime}=4 & \text { Bottom }{ }^{\prime}=3
\end{array}
$$

Use this formula:

$$
\begin{aligned}
& \frac{(\text { bottom the derivative of the top })-(\text { top } \cdot \text { the derivative of the bottom })}{(\text { bottom })^{2}} \\
& \frac{(3 x-2)(4)-(4 x+7)(3)}{(3 x-2)^{2}}=\frac{12 x-8-12 x-21}{(3 x-2)^{2}}=\frac{-29}{(3 x-2)^{2}}
\end{aligned}
$$

Try it again

$$
\begin{array}{ccl}
y=\frac{\sqrt{x}-1}{\sqrt{x}+1} & \text { top }=\sqrt{x}-1 & \text { bot }=\sqrt{x}+1 \\
& \text { Top }^{\prime}=\frac{1}{2 \sqrt{x}} & \text { bot }^{\prime}=\frac{1}{2 \sqrt{x}} \\
y^{\prime}=\frac{b d t-t d b}{b^{2}}= & \frac{\frac{\sqrt{x}+1}{2 \sqrt{x}}-\frac{\sqrt{x}-1}{2 \sqrt{x}}}{(\sqrt{x}+1)^{2}}= & \frac{\frac{\sqrt{x}+1-\sqrt{s}+1}{2 \sqrt{x}}}{(\sqrt{x}+1)^{2}}=\frac{2}{2 \sqrt{x}(\sqrt{x}+1)^{2}}=\frac{1}{\sqrt{x}(\sqrt{x}+1)^{2}}
\end{array}
$$

