3.2 Notes

There are four different types of functions that do not have derivatives at certain points.
Graph $y=|x|$.

If $x<0$, the derivative is -1 . If $x>0$, the derivative is 1 .
What is the derivative at $x=0$? Since the left derivative does not equal the right derivative, the derivative does not exist.

This is called a corner.

Graph $y=\sqrt[3]{x^{2}}$.

What is the derivative when $x<0$? Negative What is the derivative when $x>0$? Positive What is the derivative when $x=0$? Since the left derivative does not equal the right derivative, the derivative does not exist.

This is called a cusp.

Graph $y=\sqrt[3]{x}$

What is the derivative when $x<0$? Positive What is the derivative when $x>0$? Positive When $x=0$, the derivative looks like a vertical line which is undefined.

This is called a vertical tangent.

Graph any type of discontinuity.

$$
y=\frac{x-2}{x-2}
$$

$y=\frac{1}{x}$

It should make sense that if there is value for an x , there is no derivative for the x .
These are called discontinuities.
The four types of functions that are not differentiable are:

1) Corners
2) Cusps
3) Vertical tangents
4) Any discontinuities

Give me a function is that is continuous at a point but not differentiable at the point.
A graph with a corner would do.
Give me a graph that is differentiable at a point but not continuous at the point.
You can't do it. If it is differentiable at a point, it must be continuous at the point.
Differentiability implies continuity.
Continuity does not imply differentiability.

If you take any curve and look at it over a very small x interval, it looks like a line.

This is the graph of $y=x^{2}$ over the x interval $[0,4]$ that has been decurved (my word).

I have made little line segments with different slopes to simulate the curve.
This is called linearization.

Let's look at the curve $y=x^{2}$. What is the derivative? $y^{\prime}=2 x$.

I have created two tangent lines.
One line goes through $(-1,1)$ and the other goes through $(2,4)$.

I have created two tangent lines.
One line goes through $(-1,1)$ and the other goes through $(2,4)$.

What is the slope at $x=-1$?

$$
f^{\prime}(-1)=-2
$$

What is the slope at $x=2$?

$$
f^{\prime}(2)=4
$$

Between $f^{\prime}(-1) \& f^{\prime}(2)$, we can find every number.
There is some x between $-1 \& 2$ that will create every derivative between $-2 \& 4$.
This is called the Intermediate Value for Derivatives.

What do you know if $\lim _{x \rightarrow 3} f(x)=8$? Draw a graph to disprove it if you can.
Is $f(x)$ continuous at $x=3$? No. There could be a hole.
Is $f(x)$ differentiable at $x=3$? If it is differentiable, it must be continuous, but it might not be.

Is $f(3)=8$? No, if there is a piecewise function, the value might not equal the limit.

Does $\lim _{x \rightarrow 3^{-}} f(x)=8$? If the limit exists, the left side limit must equal the right side limit.

Does $\lim _{x \rightarrow 3^{+}} f(x)=8$? Same as above.

What do you know if $\lim _{x \rightarrow 1} \frac{3 x^{2}-3}{x-1}=6$?
This is the definition of the derivative in the form of $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a)$
Is $f^{\prime}(1)=6$? Yes, by this definition.
Is $f(x)$ differentiable at $x=1$? Yes, differentiability implies continuity.
Is $f(1)=6$? We know nothing about the value at $x=1$.

Does $\lim _{x \rightarrow 1^{-}} f(x)=6$? We know nothing about the limit at $x=1$.

Does $\lim _{x \rightarrow 1^{+}} f(x)=6$? We know nothing about the limit at $x=1$.

