Calculus 3.2, 3.4 – 3.6 Review

What does differentiable mean? You can take a derivative.

Differentiability implies continuity.

What are the four ways a function can be non-differentiable? Give graphs that demonstrate.

Corner
$$y = |x|$$

Cusp $y = x^{\frac{3}{2}}$
Vertical Tangent $y = tan^{-1}x$
Discontinuity $y = \frac{x}{x}$

What is the Intermediate Value Theorem for Derivatives?

If f'(3) = 10 and f'(12) = 20, for every derivative between 10 & 20, there is an x value between 23 and 12 to create it.

If $x(t) = x^3 - 15x^2 + 72x + 2$ is the position function for a particle, find the

following:

Velocity: Find the derivative of the position function. $v(t) = 3x^2 - 30x + 72$ Acceleration: Find the derivative of the velocity function. a(t) = 6x - 30When does the particle change direction? Set the velocity = 0.

$$v(t) = 3x^{2} - 30x + 72 = 0 \quad x^{2} - 10x + 24 = 0 \quad (x - 6)(x - 4) = 0$$
$$x = 4, 6$$

What is the displacement over the first 10 seconds?

Final position – initial position.

x(10) = 222 x(0) = 2 x(10) - x(2) = 220

What is the total distance travelled over the first 10 seconds?

$$x(4) - x(0) = 114 - 2 = 112$$

$$x(6) - x(4) = 110 - 114 = -4 = 4$$

$$x(10) - x(6) = 222 - 110 = 112$$

Total distance equals $112 + 4 + 112 = 228$

What is the velocity when the acceleration is 0?

Let the acceleration = 0, solve for t and put that t value into the velocity

function.

$$a(t) = 6t - 30 = 0$$
 $6t = 30$ $t = 5$

v(5) = -3

What direction is the particle going when t = 3?

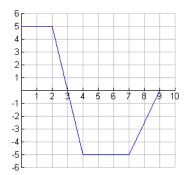
Look at the velocity function at t = 3.

If it is positive, the particle is moving right.

If it is negative, the particle is moving left.

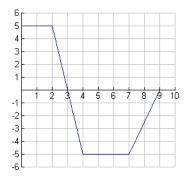
v(3) = 9 The particle is moving to the right.

This is a velocity graph.



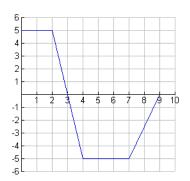
At t = 1,

The particle is traveling at what velocity? 5
The particle is traveling at what speed? 5
The particle is traveling in what direction? right
What is the acceleration? 0
Is the particle right or left of its original position? right
The particle is slowing down, speeding up or staying at a constant speed? Staying at a constant speed.



The particle is traveling at what velocity? -5 The particle is traveling at what speed? 5 The particle is traveling in what direction? left What is the acceleration? 0 Is the particle right or left of its original position? At the original position. The particle is slowing down, speeding up or staying at a constant speed?

Staying at a constant speed.



The particle is traveling at what velocity? -2.5
The particle is traveling at what speed? 2.5
The particle is traveling in what direction? left
What is the acceleration? 2.5
Is the particle right or left of its original position? left
The particle is slowing down, speeding up or staying at a constant speed? The particle is slowing down.

If v(t) = 9 & a(t) = -4, the particle is _____

to the _____. Slowing down to the right.

If v(t) = -9 & a(t) = -4, the particle is _____

to the _____. Speeding up to the left.

If v(t) = -9 & a(t) = 4, the particle is ______

to the _____. Slowing down to the left.

What is the derivative of y = sinx and prove it.

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \frac{\sin x \cosh + \cos x \sinh - \sin x}{h}$$
$$\lim_{h \to 0} \frac{\sin x \cosh - \sin x}{h} + \lim_{h \to 0} \frac{\cos x \sinh h}{h} = \sin x \lim_{h \to 0} \frac{\cosh - 1}{h} + \cos x \lim_{h \to 0} \frac{\sin x}{x}$$
$$\lim_{h \to 0} \frac{\cosh - 1}{h} = 0 \text{ because of this graph}$$

 $\lim_{h \to 0} \frac{\cosh - 1}{h} = 0$ because of this graph.

 $\lim_{h \to 0} \frac{\sin x}{x} = 1$ because of this graph

sinx(0) + cosx(1) = cosx

What is the derivative of y = cosx and prove it.

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\cos x \cosh - \sin x \sinh - \cos x}{h}$$
$$= \lim_{h \to 0} \frac{\cos x \cosh - \cos x}{h} - \lim_{h \to 0} \frac{\sin x \sinh h}{h}$$
$$\lim_{h \to 0} \frac{\cos x (\cosh - 1)}{h} - \lim_{h \to 0} \frac{\sin x \sinh h}{h} =$$
$$\cos x \lim_{h \to 0} \frac{(\cosh - 1)}{h} - \sin x \lim_{h \to 0} \frac{\sinh h}{h} =$$
$$\lim_{h \to 0} \frac{(\cosh - 1)}{h} = 0 \text{ because of the graph}$$

 $\lim_{h \to 0} \frac{sinh}{h} = 1$ because of the graph cosx(0) - sinx(1) = -sinx What is the derivative of y = tanx and prove it.

$$y = \frac{sinx}{cosx}$$

Use the quotient rule to find the derivative.

$$\frac{BDT-TDB}{B^2} = \frac{\cos x (\cos x) - \sin x (-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x$$

Find the derivative of y = cotx and prove it.

$$y = \frac{\cos x}{\sin x}$$

Use the quotient rule to find the derivative.

$$\frac{BDT-TDB}{B^2} = \frac{sinx(-sinx)-cosx(-cosx)}{cos^2x} = \frac{-sin^2x-cos^2x}{sin^2x} = \frac{-(sin^2x+cos^2x)}{sin^2x} = \frac{-1}{sin^2x} = -csc^2x$$

Find the derivative of y = secx and prove it.

$$y = \frac{1}{\cos x}$$

Use the quotient rule to find the derivative.

$$\frac{BDT-TDB}{B^2} = \frac{\cos x(0) - 1(-\sin x)}{\cos^2 x} = \frac{\sin x}{\cos^2 x} = \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x} = tanxsecx = secxtanx$$

Find the derivative of y = cscx and prove it.

$$y = \frac{1}{sinx}$$

Use the quotient rule to find the derivative.

 $\frac{BDT-TDB}{B^2} = \frac{sinx(0)-1(cosx)}{sin^2x} = \frac{-cosx}{sin^2x} = \frac{-cosx}{sinx} \cdot \frac{1}{sinx} = -cotxcscx = -cscxcot$

Function $y = sinx$	Derivative y' = cosx
y = cosx	y' = -sinx
y = tanx	$y' = sec^2 x$
y = cotx	$y' = -csc^2x$
y = secx	y' = secxtanx
y = cscx	y' = -cscxcotx
$y = x^n$	$y' = nx^{n-1}$
y = f(x) + g(x)	y' = f'(x) + g'(x)

$$y = (\sqrt{7})^3$$

 $y = f(x)g(x)$
 $y' = 0$
 $y' = f'(x)g(x) + f(x)g'(x)$

$$y = \frac{f(x)}{g(x)} \qquad \qquad y' = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$$

$$y = f(g(h(x))) \qquad \qquad y' = f'\left(g(h(x))\right)g'(h(x))h'(x)$$

Find the derivative.

$$y = sin^{3}(5x - 2)$$

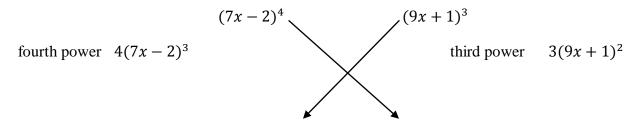
Sin
 $5x - 2$
Cube
 $3sin^{2}(5x - 2)$
 $5x - 2$
Cube
 $3sin^{2}(5x - 2)$
 $5x - 2$
Cube
 $5x - 2$

$$y' = 15sin^2(5x - 2)\cos(5x - 2)$$

$$y = sec^{4}(sin(4x - 3))$$
fourth power $4sec^{3}(sin(4x - 3))$
Sec $sec(sin(4x - 3)) tan (sin(4x - 3))$
Sin $cos (4x - 3)$
 $4x - 3$
 $4x - 3$
 4
 $y' = 16sec^{4}(sin(4x - 3)) tan(sin(4x - 3)) cos (4x - 3)$

$$y = (7x - 2)^4 (9x + 1)^3$$

TCC Problem



7x - 2 7

$$27(7x - 2)^{4}(9x + 1)^{2} + 28(9x + 1)^{3}(7x - 2)^{3}$$
$$(7x - 2)^{3}(9x + 1)^{2}(27(7x - 2) + 28(9x + 1))$$
$$(7x - 2)^{3}(9x + 1)^{2}(189x - 54 + 252x + 28)$$
$$(7x - 2)^{3}(9x + 1)^{2}(441x - 26)$$