Calculus 3.1-3.3 Review
What does differentiable mean?
You can take a derivative.

Differentiability implies continuity.

What are the four ways a function can be non-differentiable? Give graphs that demonstrate.

corner

cusp

vertical tangent

discontinuity

What is the Intermediate Value Theorem for Derivatives?

$$
\text { If } f^{\prime}(0)=-5 \text { and } f^{\prime}(10)=13
$$

For every derivative between $-5 \& 13$, there is a $f^{\prime}(c)$ with $0 \leq c \leq 10$ to create it.

What is the derivative of each of the following functions?

$$
\begin{array}{ll}
y=7 & y^{\prime}=0 \\
y=9 x & y^{\prime}=9 \\
y=5 x^{3}-9 x+1 & y^{\prime}=15 x^{2}-9 \\
y=e^{\pi} & y^{\prime}=0 \\
y=\sqrt{x} & y^{\prime}=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}} \\
y=x^{\frac{1}{2}} & \\
y=\frac{1}{4 x^{7}} & y=x^{-\frac{7}{4}}
\end{array}
$$

$$
\begin{array}{lll}
y=\frac{1}{x^{5}} & y=x^{-5} & y^{\prime}=-5 x^{-6}=-\frac{5}{x^{6}} \\
y=\left(7 x^{2}+8 x-2\right)\left(4 x^{2}+9 x-1\right) & 7 x^{2}+8 x-2 & 4 x^{2}+9 x-1 \\
& 14 x+8 & 8 x+9 \\
& \left(7 x^{2}+8 x-2\right)(8 x+9)+\left(4 x^{2}+9 x-1\right)(14 x+8)
\end{array}
$$

$56 x^{3}+63 x^{2}+64 x^{2}+72 x-16 x-18+56 x^{3}+32 x^{2}+126 x^{2}+72 x-14 x-8$

$$
y^{\prime}=112 x^{3}+285 x^{2}+114 x-26
$$

$$
\begin{array}{cc}
y=\left(6 x^{3}+8 x\right)(\sqrt[3]{x}) & 6 x^{3}+8 x \\
18 x^{2}+8 & (x)^{\frac{1}{3}} \\
\frac{1}{3} x^{-\frac{2}{3}} \\
& \left(\frac{6 x^{3}+8 x}{3 x^{\frac{2}{3}}}\right)+\frac{1}{3 x^{\frac{2}{3}}} \\
& \frac{6 x^{3}+8 x+\left(3 x^{\frac{2}{3}}\right)\left(\left(18 x^{2}+8\right)(\sqrt[3]{x})\right.}{3 x^{\frac{2}{3}}} \\
y^{\prime}=\frac{60 x^{3}+32 x}{3 x^{\frac{2}{3}}}
\end{array}
$$

$$
y=\frac{2 \sqrt{x}+7}{4 \sqrt{x}-1}
$$

$$
\begin{aligned}
& \text { top }=2 \sqrt{x}+7 \quad \text { bot }=4 \sqrt{x}-1 \\
& \text { top }^{\prime}=\frac{1}{\sqrt{x}} \quad \text { bot }^{\prime}=\frac{2}{\sqrt{x}} \\
& \frac{\frac{4 \sqrt{x}-1}{\sqrt{x}}-\frac{2(2 \sqrt{x}+7)}{\sqrt{x}}}{(4 \sqrt{x}-1)^{2}}=\frac{\frac{4 \sqrt{x}-1-4 \sqrt{x}-14}{\sqrt{x}}}{(4 \sqrt{x}-1)^{2}}=\frac{-15}{\sqrt{x}(4 \sqrt{x}-1)^{2}}=
\end{aligned}
$$

Use $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ to find $f^{\prime}(2)$ with $f(x)=\sqrt{x+2}$.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\sqrt{x+h+2}-\sqrt{x+2}}{h} \cdot \frac{\sqrt{x+h+2}+\sqrt{x+2}}{\sqrt{x+h+2}+\sqrt{x+2}}=\lim _{h \rightarrow 0} \frac{x+h+2-x-2}{h(\sqrt{x+h+2}+\sqrt{x+2})}= \\
& \lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h+2}+\sqrt{x+2})}=\lim _{h \rightarrow 0} \frac{1}{(\sqrt{x+h+2}+\sqrt{x+2})}=\frac{1}{2 \sqrt{x+2}} \text { at } x=2=\frac{1}{4}
\end{aligned}
$$

Use $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ to find $f^{\prime}(3)$ with $f(x)=\frac{1}{x+6}$.

$$
\lim _{h \rightarrow 0} \frac{\frac{1}{3+h+6}-\frac{1}{9}}{h}=\lim _{h \rightarrow 0} \frac{\frac{9-9-h}{9(9+h)}}{h}=\lim _{h \rightarrow 0}-\frac{h}{9 h(9+h)}=-\frac{1}{9(9)}=-\frac{1}{81}
$$

$$
\begin{aligned}
& y=\frac{2 x-9}{8 x+1} \\
& \text { top }=2 x-9 \quad \text { bot }=8 x+1 \\
& t o p^{\prime}=2 \quad \text { bot }^{\prime}=8 \\
& \frac{2(8 x+1)-(2 x-9) 8}{(8 x+1)^{2}}=\frac{16 x+2-16 x+72}{(8 x+1)^{2}}=\frac{74}{(8 x+1)^{2}} \\
& y^{\prime}=\frac{74}{(8 x+1)^{2}}
\end{aligned}
$$

Use $\lim _{x \rightarrow 1} \frac{f(x)-f(a)}{x-a}$ to find $f^{\prime}(1)$ if $f(x)=(6 x-5)^{4}-81$

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{(6 x-5)^{4}-81-(-80)}{x-1}=\lim _{a \rightarrow 1} \frac{(6 x-5)^{4}-1}{x-1}=\lim _{a \rightarrow 1} \frac{\left((6 x-5)^{2}+1\right)\left((6 x-5)^{2}-1\right)}{x-1} \\
& \lim _{x \rightarrow 1} \frac{\left.\left((6 x-5)^{2}+1\right)((6 x-5))-1\right)((6 x-5)+1)}{x-1}=\lim _{x \rightarrow 1} \frac{\left((6 x-5)^{2}+1\right)(6 x-6)(6 x-4)}{x-1}= \\
& \left.\lim _{x \rightarrow 1} \frac{\left((6 x-5)^{2}+1\right) 6(x-1)(6 x-4)}{x-1}=\lim _{x \rightarrow 1}(6 x-5)^{2}+1\right) 6(6 x-4)=24
\end{aligned}
$$

