### 2.3 Continuity

Explain continuity to a third grader.
Draw a graph and do not pick up your pencil.
The three mathematical conditions for continuity:

1) For every value of $c$ in the function, $f(c)$ exists.
2) For value of $c, \lim _{x \rightarrow c} f(x)$ exists.
3) $\lim _{x \rightarrow c} f(x)=f(c)$

The three mathematical conditions in high schoolian:

1) Every $x$ has a $y$ value
2) Every $x$ has a limit
3) Every limit of an $x$ equals the value of the $x$.

Draw a graph and give an equation of a function for each type of discontinuity.

1) Jump

$$
\text { Piecewise or } f(x)=[x]
$$

2) Infinite

$$
f(x)=\frac{1}{x} \quad f(x)=\frac{x-2}{x+3}
$$

3) Oscillating

$$
f(x)=\sin \left(\frac{1}{x}\right)
$$

4) Removable

$$
f(x)=\frac{x-2}{x-2}
$$

If two functions are continuous, their sum is continuous.
All composites of continuous functions are continuous.
If $f(x) \& g(x)$ are continuous, $f(g(x)) \& g(f(x))$ are continuous.

A continuous function is continuous at every point in its domain.
Is $f(x)=\frac{1}{x}$ a continuous function?
Yes. The function is discontinuous at $x=0$ but 0 is not in the domain.

Is $f(x)=[x]$ a continuous function?
No. This is a classic jump function. The jumps are within the domain.

Intermediate Value Theorem

| 7 |  | $f(x)$ |
| :--- | :--- | :--- | :--- |
| 2 |  |  |
|  | 1 | 13 |

If $f(x)$ is continuous over $[1,13]$, for any $y$ value between [2,7], there must be an $x$ value between $1 \& 13$ to create it.

The mathy version:
If $f(x)$ is continuous over $[a, b]$, for any $y_{0}$ such that $f(a) \leq y_{0} \leq f(b)$, there must be a $c$ such that $a \leq c \leq b$, such that $f(c)=y_{0}$.

