2.1 Limits

What does $\lim _{x \rightarrow c} f(x)=L$ mean?
As x approaches c, the $f(x)$ or y value approaches L.
$\lim _{x \rightarrow 4} x^{2}=16$
As x approaches $4, x^{2}\left(4^{2}\right)$ approaches 16 .
Approaches means from both sides of 4.
From the left side $\quad 3,3.5,3.75,3.9,3.95,3.999 \rightarrow 4$
From the right side $\quad 5,4.5,4.25,4.1,4.09,4.05,4.001 \rightarrow 4$
Properties of limits

$$
\text { If } \lim _{x \rightarrow c} f(x)=L, \lim _{x \rightarrow c} g(x)=M
$$

You can add them

$$
\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)=L+M
$$

You can subtract them $\quad \lim _{x \rightarrow c} f(x)-\lim _{x \rightarrow c} g(x)=L-M$
You can multiply them $\quad \lim _{x \rightarrow c}(f(x))(g(x))=L \cdot M$
You can divide them

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}
$$

You can factor out a constant $\quad \lim _{x \rightarrow c} k f(x)=k L$
You can raise them to a power $\lim _{x \rightarrow c}(f(x))^{p}=L^{p}$

There are three ways to find a limit as x approaches a value.

1) $\lim _{x \rightarrow 3}\left(x^{2}+9 x-2\right)$ Just plug it in.
$3^{2}+9(3)-2=34$
2) $\lim _{x \rightarrow 0} \frac{x}{x^{2}+3 x}$

Do algebra (usually factoring), cancel something out and then just plug it in.
$\lim _{x \rightarrow 0} \frac{x}{x(x+3)}=\lim _{x \rightarrow 0} \frac{1}{(x+3)}=\frac{1}{3}$
$\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{x^{2}-3 x+2}=\lim _{x \rightarrow 2} \frac{(x-2)(x-2)}{(x-2)(x-1)}=\lim _{x \rightarrow 2} \frac{x-2}{2-1}=0$
$\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}=\lim _{x \rightarrow 4} \frac{(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}-2}=\lim _{x \rightarrow 4} \sqrt{x}+2=4$
3) $\lim _{x \rightarrow 0} \frac{\sin x}{x} \quad$ Graph it or memorize it.

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0
$$

One Sided Limits
What does this mean? $\lim _{x \rightarrow c^{-}} f(x)$
What does the y value approach as the x value approaches c from the left (negative) side?

This is called the left-side limit.
What does this mean? $\quad \lim _{x \rightarrow c^{+}} f(x)$
What does the y value approach as the x value approaches c from the right (positive) side?

This is called the right-side limit.
Create a function where the left-side limit does not equal the right-side limit.

$$
\begin{aligned}
& f(x)=\frac{1}{x} \\
& \lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty \quad \lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty
\end{aligned}
$$

If the left-side limit does not equal the right-side limit, the limit does not exist.
The mathy version of this:
If $\lim _{x \rightarrow c^{-}} f(x) \neq \lim _{x \rightarrow c^{+}} f(x)$, then $\lim _{x \rightarrow c} f(x)$ does not exist.

What is $\lim _{x \rightarrow 2} f(x) ? \quad f(x)= \begin{cases}x^{2}-3 x+1 & \text { if } x<2 \\ -|x-3| & \text { if } x \geq 2\end{cases}$
$x<2$ is the left side limit
$x>2$ is the right side limit
We have to see if both of these are the same. Plug in the 2 to both functions and you get -1 for both. Since the left-side limit equals the rightside limit, the limit exists.

Create a graph where the y-value of a function equals the limit of the function.

Create a graph where the y-value of a function exists but does it not equal the limit of the function. The limit exists.

Create a graph where the y-value of a function does not exist but the limit exists at that x-value.

