Calculus 2.1-2.4 Notes
Find the limit showing the work.
$\lim _{x \rightarrow 2}(6 x-4)=6(2)-4=8$
$\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{x-2}{(x+2)(x-2)}=\lim _{x \rightarrow 2} \frac{1}{x+2}=\frac{1}{4}$
$\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}=\lim _{x \rightarrow 4} \frac{(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}-2}=\lim _{x \rightarrow 4} \sqrt{x}+2=4$
$\lim _{x \rightarrow 0} \frac{\sin 5 x}{x}=\lim _{x \rightarrow 0} \frac{5 \sin 5 x}{5 x}=5 \lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x}=5(1)=5$
$\lim _{x \rightarrow \infty} \frac{x}{x+17}$ Bill Gates \rightarrow Powers are equal, do coefficients 1
$\lim _{x \rightarrow \infty} \frac{x^{3}}{x^{2}+9 x-17}$ Bill Gates \rightarrow Bigger power on top ∞
$\lim _{x \rightarrow \infty} \frac{x^{2}+10,000}{x^{4}+x^{3}+17}$ Bill Gates \rightarrow Bigger power on bottom 0

Explain the three different possible answers for Bill Gates.
$\lim _{x \rightarrow \infty} \frac{a x^{b}}{c x^{d}}=\quad$ If $\mathrm{b}>\mathrm{d}$, the limit goes to ∞
If $\mathrm{d}>\mathrm{b}$, the limit goes to 0
If $\mathrm{d}=\mathrm{b}$, the limit goes to $\frac{a}{c}$

What are the vertical and horizontal asymptotes for $f(x)=\frac{x^{3}-2 x^{2}+x}{x^{2}-x}$?

$$
\frac{x^{3}-2 x^{2}+x}{x^{2}-x}=\frac{x\left(x^{2}-2 x+1\right)}{x(x-1)}=\frac{x(x-1)(x-1)}{x(x-1)}=x-1
$$

There are no vertical asymptotes only holes at $\mathrm{x}=1$.
There is no horizontal(use Bill gates).

What are the four types of discontinuities? Use graphs to describe them.

Removeable

Jump

$y=\sin \left(\frac{1}{x}\right)$
Oscillating

$y=\frac{1}{x-2}$

Infinite

What is the easiest way to see if a graph is continuous?
If the graph is continuous, you will not have to pick up your pencil.

What are the three mathematical conditions to show that a function is continuous?

$$
f(a) \text { exists, } \lim _{x \rightarrow a} f(x) \text { exists, } f(a)=\lim _{x \rightarrow a} f(x)
$$

Is $f(x)=\frac{x+4}{x(x-4)}$ a continuous function? Explain why or why not.
Yes. It is continuous within its domain.

Create a function that has a removable discontinuity and then remove the discontinuity.

$$
y=\frac{x-5}{x-5} \quad y=\left\{\begin{array}{ll}
\frac{x-5}{x-5} & \text { if } x \neq 5 \\
1 & \text { if } x=5
\end{array} \quad \text { OR } \quad y=1\right.
$$

If $\lim _{x \rightarrow 2^{+}} f(x) \neq \lim _{x \rightarrow 2^{-}} f(x)$ then $\lim _{x \rightarrow 2} f(x)$ does not exist.

Draw a graph with the following conditions.

$$
\begin{array}{lll}
\lim _{x \rightarrow 2^{+}} f(x)=4 & \lim _{x \rightarrow 2^{-}} f(x)=-5 & f(2)=0 \\
\lim _{x \rightarrow-5^{+}} f(x)=\infty & \lim _{x \rightarrow-5^{-}} f(x)=\infty & \\
\lim _{x \rightarrow 8^{+}} f(x)=\infty & \lim _{x \rightarrow 8^{-}} f(x)=-\infty & \\
\lim _{x \rightarrow-1} f(x)=-3 & f(-1)=7 \\
\lim _{x \rightarrow \infty} f(x)=0 & \lim _{x \rightarrow-\infty} f(x)=4
\end{array}
$$

Find the derivative of the following functions using the definition of the derivative.

$$
\begin{aligned}
& f(x)=x^{2}-7 x+5 \\
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-7(x+h)+5-\left(x^{2}-7 x+5\right)}{h} \\
& \lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-7 x-7 h+5-x^{2}+7 x-5}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-7 h}{h}=\lim _{h \rightarrow 0}(2 x+h-7)=2 x-7 \\
& f(x)=\frac{1}{x+9} \\
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{x+9+h}-\frac{1}{x+9}}{h}=\lim _{h \rightarrow 0} \frac{\frac{x+9-x-9-h}{(x+9+h)(x+9)}}{h}=\lim _{h \rightarrow 0} \frac{\frac{-h}{(x+9+h)(x+9)}}{h} \\
& \lim _{h \rightarrow 0} \frac{-h}{h(x+9+h)(x+9)}=\lim _{h \rightarrow 0} \frac{-1}{(x+9+h)(x+9)}=-\frac{1}{(x+9)^{2}} \\
& f(x)=\sqrt{x-6} \\
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h-6}-\sqrt{x-6}}{h} \cdot \frac{\sqrt{x+h-6}+\sqrt{x-6}}{\sqrt{x+h-6}+\sqrt{x-6}}=\lim _{h \rightarrow 0} \frac{x+h-6-x+6}{h(\sqrt{x+h-6}+\sqrt{x-6})} \\
& \lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h-6}+\sqrt{x-6})}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h-6}+\sqrt{x-6}}=\frac{1}{2 \sqrt{x-6}} \\
& f(x)=\sin x \\
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}=\lim _{h \rightarrow 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h} \\
& \lim _{h \rightarrow 0} \frac{\sin x \cosh -\sin x}{h}+\lim _{h \rightarrow 0} \frac{\cos x \sin h}{h}=\sin x \lim _{h \rightarrow 0} \frac{\cosh -1}{h}+\cos x \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& \sin x(0)+\cos x(1)=\cos x
\end{aligned}
$$

Find the equation of the tangent and normal lines to the curve $y=x^{3}+4$ at $x=2$.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{3}+4-x^{3}-4}{h} \\
& \lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}+4-x^{3}-4}{h}=\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}}{h} \\
& \lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}\right)=3 x^{2}
\end{aligned}
$$

When $x=2, m=3(2)^{2}=12, y=x^{3}+4=2^{3}+4=12$
$(2,12) m=12 \quad y-12=12(x-2) \quad$ is the tangent line

$$
y-12=-\frac{1}{12}(x-2) \quad \text { is the normal line }
$$

