Review for 2.1-2.2 Limits

1) What does $\lim _{x \rightarrow c} f(x)=L$ mean?

As the x value approaches c , the y value approaches L .
2) If $\lim _{x \rightarrow 3^{-}} f(x)=8 \& \lim _{x \rightarrow 3^{+}} f(x)=10$, The limit does not exist.
3) What are the three ways to find a limit?

Plug it in.
Algebra (factor)
Graph it.
4) $\lim _{x \rightarrow 3} \frac{x^{2}-3 x+4}{2 x-7}=$

$$
\frac{3^{2}-3(3)+4}{2(3)-7}=\frac{4}{-1}=-4
$$

5) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=$

$$
\frac{(x-3)(x+3)}{x-3}=\lim _{x \rightarrow 3}(x+3)=6
$$

6) $\lim _{x \rightarrow 3} \frac{x-3}{\sqrt{x-3}}=$

$$
\begin{gathered}
\lim _{x \rightarrow 3} \frac{x-3}{\sqrt{x-3}} \cdot \frac{\sqrt{x-3}}{\sqrt{x-3}}=\lim _{x \rightarrow 3} \frac{(x-3) \sqrt{x-3}}{(x-3)} \\
=\lim _{x \rightarrow 3} \sqrt{x-3}=0
\end{gathered}
$$

7) $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9} \cdot \frac{\sqrt{x}+3}{\sqrt{x}+3}=\lim _{x \rightarrow 9} \frac{x-9}{(x-9)(\sqrt{x}+3)}=\lim _{x \rightarrow 9} \frac{1}{\sqrt{x}+3}=\frac{1}{6}$
8) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ from the graph
9) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin 7 x}=\lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x} \cdot \frac{7 x}{\sin 7 x} \cdot \frac{5}{7}=1 \cdot 1 \cdot \frac{5}{7}=\frac{5}{7}$
10) $\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x \cos x}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{\sin x}{\cos x}=\lim _{x \rightarrow 0}(1)(\tan x)=\tan (0)=0$
11) $\lim _{x \rightarrow 0} \frac{1}{x \csc x}=\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
12) $\lim _{x \rightarrow 0} \frac{\sin x}{x^{2}-7 x}=\lim _{x \rightarrow 0} \frac{\sin x}{x(x-7)}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{1}{x-7}=(1)\left(-\frac{1}{7}\right)=-\frac{1}{7}$
13) $\lim _{x \rightarrow \infty} \frac{x^{2}+9 x-2}{x+10,000}=$ Bill Gates Biggest power on the top means ∞.
14) $\lim _{x \rightarrow \infty} \frac{2 x}{5 x^{7}-13}=$ Bill Gates Biggest power on the bottom means 0 .
15) $\lim _{x \rightarrow \infty} \frac{x^{4}+9 x-1}{5 x^{4}+3}=$ Billy $\frac{x^{4}}{5 x^{4}}=\frac{1}{5}$
16) $\lim _{x \rightarrow \infty} \frac{\sin x}{x}=0 \quad$ Graph.
17) $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+9 x}+8 x}{7 x-19}=\lim _{x \rightarrow \infty} \frac{x+8 x}{7 x}=\frac{9}{7}$
18) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-9 x}+2 x\right) \frac{\sqrt{x^{2}-9 x}-2 x}{\sqrt{x^{2}-9 x}-2 x}=\lim _{x \rightarrow \infty} \frac{x^{2}-9 x-2 x^{2}}{\sqrt{x^{2}-9 x}-2 x}=\lim _{x \rightarrow \infty} \frac{-x^{2}}{x-2 x}=$ $\lim _{x \rightarrow \infty} \frac{-x^{2}}{x-2 x}=\lim _{x \rightarrow \infty} \frac{-x^{2}}{-x}=\lim _{x \rightarrow \infty} x=\infty$
19) Use the mathematical way to solve this Bill Gates problem.

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{x^{2}+6 x-13}{x^{3}+9 x-12}=\lim _{x \rightarrow \infty} \frac{\frac{x^{2}}{x^{3}}+\frac{6 x}{x^{3}}-\frac{13}{x^{3}}}{\frac{x^{3}}{x^{3}}+\frac{9 x}{x^{3}}-\frac{12}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}+\frac{6}{x^{2}}-\frac{13}{x^{3}}}{1+\frac{9}{x^{2}}-\frac{12}{x^{3}}} \\
\lim _{x \rightarrow \infty} \frac{0+0+0}{1+0+0}=0
\end{gathered}
$$

20) What are the three options for this limit?

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{f x^{h}}{p x^{v}} \\
& \quad h>v \infty \quad h=v \frac{f}{p} \quad h<v \quad 0
\end{aligned}
$$

21) Give an power function for the end behavior for $f(x)=\frac{3 x^{2}+8 x-12}{4 x+10}$

Do Bill Gates and do not plug in the infinity.

$$
f(x)=\frac{3 x^{2}+8 x-12}{4 x+10}=\frac{3 x^{2}}{4 x}=\frac{3 x}{4}
$$

22) What is the easiest way to find a horizontal asymptote?

Use Bill Gates.
23) Which asymptote (horizontal, vertical, both or neither) can you cross?

Horizontal

24) Draw a function with the following characteristics:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=\infty, \lim _{x \rightarrow-\infty} f(x)=2 \\
& \lim _{x \rightarrow-4} f(x)=-3, f(-4)=7 \\
& \lim _{x \rightarrow 0^{-}} f(x)=-\infty, \quad \lim _{x \rightarrow 0^{+}} f(x)=\infty \\
& \lim _{x \rightarrow 5^{-}} f(x)=7, \quad \lim _{x \rightarrow 5^{+}} f(x)=-3
\end{aligned}
$$

25) Use the Sandwich Theorem to find $\lim _{x \rightarrow \infty} \frac{\sin ^{4} x}{x^{2}+1}$.

$$
\begin{aligned}
& 0 \leq \sin ^{4} x \leq 1 \\
& \frac{0}{x^{2}+1} \leq \frac{\sin ^{4} x}{x^{2}+1} \leq \frac{1}{x^{2}+1} \\
& \lim _{x \rightarrow \infty} \frac{0}{x^{2}+1}=0, \lim _{x \rightarrow \infty} \frac{1}{x^{2}+1}=0 \\
& \quad \lim _{x \rightarrow \infty} \frac{\sin ^{4} x}{x^{2}+1}=0
\end{aligned}
$$

26) If $f(x)=\left\{\begin{array}{c}3 x-5 \text { for }-3 \leq x<6 \\ x^{2}-23 \quad \text { for } 6 \leq x\end{array}\right.$, what is $\lim _{x \rightarrow 6} f(x)$?

$$
\begin{aligned}
& 3(6)-5=13 \\
& 6^{2}-23=13 \\
& \quad \lim _{x \rightarrow 6} f(x)=13
\end{aligned}
$$

27) If $a \neq 0$, then $\lim _{x \rightarrow a} \frac{x^{2}-a^{4}}{x^{4}-a^{8}}=\lim _{x \rightarrow a} \frac{x^{2}-a^{4}}{\left(x^{2}-a^{4}\right)\left(x^{2}+a^{4}\right)}=$

$$
\lim _{x \rightarrow a} \frac{1}{\left(x^{2}+a^{4}\right)}=\frac{1}{a^{2}+a^{4}}
$$

28) For $x \geq 0, y=4$ is the horizontal asymptote for the function $f(x)$. Create the limit that best describes this relationship.

$$
\lim _{x \rightarrow \infty} f(x)=4
$$

